##// END OF EJS Templates
implemented parallel map and foreach for arrays...
implemented parallel map and foreach for arrays rewritten WorkerPool with MTQueue for more efficiency

File last commit:

r15:0f982f9b7d4d promises
r15:0f982f9b7d4d promises
Show More
DispatchPool.cs
171 lines | 5.2 KiB | text/x-csharp | CSharpLexer
cin
implemented parallel map and foreach for arrays...
r15 using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Diagnostics;
namespace Implab.Parallels {
public abstract class DispatchPool<TUnit> : IDisposable {
readonly int m_minThreads;
readonly int m_maxThreads;
int m_runningThreads = 0;
int m_maxRunningThreads = 0;
int m_suspended = 0;
int m_exitRequired = 0;
AutoResetEvent m_hasTasks = new AutoResetEvent(false);
protected DispatchPool(int min, int max) {
if (min < 0)
throw new ArgumentOutOfRangeException("min");
if (max <= 0)
throw new ArgumentOutOfRangeException("max");
if (min > max)
min = max;
m_minThreads = min;
m_maxThreads = max;
}
protected DispatchPool(int threads)
: this(threads, threads) {
}
protected DispatchPool() {
int maxThreads, maxCP;
ThreadPool.GetMaxThreads(out maxThreads, out maxCP);
m_minThreads = 0;
m_maxThreads = maxThreads;
}
protected void InitPool() {
for (int i = 0; i < m_minThreads; i++)
StartWorker();
}
public int ThreadCount {
get {
return m_runningThreads;
}
}
public int MaxRunningThreads {
get {
return m_maxRunningThreads;
}
}
protected bool IsDisposed {
get {
return m_exitRequired != 0;
}
}
bool StartWorker() {
var current = m_runningThreads;
// use spins to allocate slot for the new thread
do {
if (current >= m_maxThreads || m_exitRequired != 0)
// no more slots left or the pool has been disposed
return false;
} while (current != Interlocked.CompareExchange(ref m_runningThreads, current + 1, current));
m_maxRunningThreads = Math.Max(m_maxRunningThreads, current + 1);
// slot successfully allocated
var worker = new Thread(this.Worker);
worker.IsBackground = true;
worker.Start();
return true;
}
protected abstract bool TryDequeue(out TUnit unit);
protected virtual void WakeNewWorker() {
if (m_suspended > 0)
m_hasTasks.Set();
else
StartWorker();
}
bool FetchTask(out TUnit unit) {
do {
// exit if requested
if (m_exitRequired != 0) {
// release the thread slot
int running;
do {
running = m_runningThreads;
} while (running != Interlocked.CompareExchange(ref m_runningThreads, running - 1, running));
running--;
if (running == 0) // it was the last worker
m_hasTasks.Dispose();
else
m_hasTasks.Set(); // release next worker
unit = default(TUnit);
return false;
}
// fetch task
if (TryDequeue(out unit)) {
WakeNewWorker();
return true;
}
//no tasks left, exit if the thread is no longer needed
int runningThreads;
bool exit = true;
do {
runningThreads = m_runningThreads;
if (runningThreads <= m_minThreads) {
exit = false;
break;
}
} while (runningThreads != Interlocked.CompareExchange(ref m_runningThreads, runningThreads - 1, runningThreads));
if (exit) {
Interlocked.Decrement(ref m_runningThreads);
return false;
}
// keep this thread and wait
Interlocked.Increment(ref m_suspended);
m_hasTasks.WaitOne();
Interlocked.Decrement(ref m_suspended);
} while (true);
}
protected abstract void InvokeUnit(TUnit unit);
void Worker() {
TUnit unit;
while (FetchTask(out unit))
InvokeUnit(unit);
}
protected virtual void Dispose(bool disposing) {
if (disposing) {
if (m_exitRequired == 0) {
if (Interlocked.CompareExchange(ref m_exitRequired, 1, 0) != 0)
return;
// wake sleeping threads
m_hasTasks.Set();
GC.SuppressFinalize(this);
}
}
}
public void Dispose() {
Dispose(true);
}
~DispatchPool() {
Dispose(false);
}
}
}