##// END OF EJS Templates
DFA refactoring
DFA refactoring

File last commit:

r169:54270c2f29f2 ref20160224
r169:54270c2f29f2 ref20160224
Show More
DFATable.cs
280 lines | 10.8 KiB | text/x-csharp | CSharpLexer
cin
DFA refactoring
r169 using Implab;
using System;
using System.Collections.Generic;
using System.Linq;
namespace Implab.Automaton {
public class DFATable : IDFATableBuilder {
DFAStateDescriptior[] m_dfaTable;
int m_stateCount;
int m_symbolCount;
int m_initialState;
readonly HashSet<int> m_finalStates = new HashSet<int>();
readonly HashSet<AutomatonTransition> m_transitions = new HashSet<AutomatonTransition>();
void AssertNotReadOnly() {
if (m_dfaTable != null)
throw new InvalidOperationException("The object is readonly");
}
#region IDFADefinition implementation
public DFAStateDescriptior[] GetTransitionTable() {
if (m_dfaTable == null) {
if (m_stateCount <= 0)
throw new InvalidOperationException("Invalid automaton definition: states count = {0}", m_stateCount);
if (m_symbolCount <= 0)
throw new InvalidOperationException("Invalid automaton definition: symbols count = {0}", m_symbolCount);
m_dfaTable = ConstructTransitionTable();
}
return m_dfaTable;
}
public bool IsFinalState(int s) {
Safe.ArgumentInRange(s, 0, m_stateCount, "s");
return m_dfaTable != null ? m_dfaTable[s].final : m_finalStates.Contains(s);
}
public IEnumerable<int> FinalStates {
get {
return m_finalStates;
}
}
public int StateCount {
get { return m_stateCount; }
}
public int AlphabetSize {
get { return m_symbolCount; }
}
public int InitialState {
get { return m_initialState; }
}
#endregion
protected virtual DFAStateDescriptior[] ConstructTransitionTable() {
var dfaTable = new DFAStateDescriptior[m_stateCount];
foreach (var t in m_transitions) {
if (dfaTable[t.s1].transitions == null)
dfaTable[t.s1] = new DFAStateDescriptior(m_symbolCount, m_finalStates.Contains(t.s1));
dfaTable[t.s1].transitions[t.edge] = t.s2;
}
foreach (var s in m_finalStates)
if (!dfaTable[s].final)
m_dfaTable[s] = new DFAStateDescriptior(m_symbolCount, true);
}
public void SetInitialState(int s) {
Safe.ArgumentAssert(s >= 0, "s");
m_initialState = s;
}
public void MarkFinalState(int state) {
AssertNotReadOnly();
m_finalStates.Add(state);
}
public void Add(AutomatonTransition item) {
AssertNotReadOnly();
Safe.ArgumentAssert(item.s1 >= 0, "item");
Safe.ArgumentAssert(item.s2 >= 0, "item");
Safe.ArgumentAssert(item.edge >= 0, "item");
m_stateCount = Math.Max(m_stateCount, Math.Max(item.s1, item.s2) + 1);
m_symbolCount = Math.Max(m_symbolCount, item.edge);
m_transitions.Add(item);
}
public void Clear() {
AssertNotReadOnly();
m_stateCount = 0;
m_symbolCount = 0;
m_finalStates.Clear();
m_transitions.Clear();
}
public bool Contains(AutomatonTransition item) {
return m_transitions.Contains(item);
}
public void CopyTo(AutomatonTransition[] array, int arrayIndex) {
m_transitions.CopyTo(array, arrayIndex);
}
public bool Remove(AutomatonTransition item) {
AssertNotReadOnly();
m_transitions.Remove(item);
}
public int Count {
get {
return m_transitions.Count;
}
}
public bool IsReadOnly {
get {
return m_dfaTable != null;
}
}
public IEnumerator<AutomatonTransition> GetEnumerator() {
return m_transitions.GetEnumerator();
}
System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator() {
return GetEnumerator();
}
/// <summary>Формирует множества конечных состояний перед началом работы алгоритма минимизации.</summary>
/// <remarks>
/// В процессе построения минимального автомата требуется разделить множество состояний,
/// на два подмножества - конечные состояния и все остальные, после чего эти подмножества
/// будут резделены на более мелкие. Иногда требуется гарантировать различия конечных сосотяний,
/// для этого необходимо переопределить даннцю фукнцию, для получения множеств конечных состояний.
/// </remarks>
/// <returns>The final states.</returns>
protected virtual IEnumerable<HashSet<int>> GroupFinalStates() {
return new HashSet<int>[] { m_finalStates };
}
protected void Optimize<TInput, TState>(
IDFATableBuilder optimalDFA,
IAlphabet<TInput> inputAlphabet,
IAlphabetBuilder<TInput> optimalInputAlphabet,
IAlphabet<TState> stateAlphabet,
IAlphabetBuilder<TState> optimalStateAlphabet
) {
Safe.ArgumentNotNull(optimalDFA, "dfa");
Safe.ArgumentNotNull(optimalInputAlphabet, "optimalInputAlphabet");
Safe.ArgumentNotNull(optimalStateAlphabet, "optimalStateAlphabet");
Safe.ArgumentNotNull(inputAlphabet, "inputAlphabet");
Safe.ArgumentNotNull(stateAlphabet, "stateAlphabet");
if (inputAlphabet.Count != m_symbolCount)
throw new InvalidOperationException("The input symbols aphabet mismatch");
if (stateAlphabet.Count != m_stateCount)
throw new InvalidOperationException("The states alphabet mismatch");
var setComparer = new CustomEqualityComparer<HashSet<int>>(
(x, y) => x.SetEquals(y),
s => s.Sum(x => x.GetHashCode())
);
var optimalStates = new HashSet<HashSet<int>>(setComparer);
var queue = new HashSet<HashSet<int>>(setComparer);
// получаем конечные состояния, сгруппированные по маркерам
optimalStates.UnionWith(
GroupFinalStates()
);
var state = new HashSet<int>(
Enumerable
.Range(0, m_stateCount - 1)
.Where(i => !m_finalStates.Contains(i))
);
optimalStates.Add(state);
queue.Add(state);
var rmap = m_transitions
.GroupBy(t => t.s2)
.ToLookup(
g => g.Key, // s2
g => g.ToLookup(t => t.edge, t => t.s1)
);
while (queue.Count > 0) {
var stateA = queue.First();
queue.Remove(stateA);
for (int c = 0; c < m_symbolCount; c++) {
var stateX = new HashSet<int>();
foreach(var a in stateA)
stateX.UnionWith(rmap[a][c]); // all states from wich 'c' leads to 'a'
foreach (var stateY in optimalStates.ToArray()) {
if (stateX.Overlaps(stateY) && !stateY.IsSubsetOf(stateX)) {
var stateR1 = new HashSet<int>(stateY);
var stateR2 = new HashSet<int>(stateY);
stateR1.IntersectWith(stateX);
stateR2.ExceptWith(stateX);
optimalStates.Remove(stateY);
optimalStates.Add(stateR1);
optimalStates.Add(stateR2);
if (queue.Contains(stateY)) {
queue.Remove(stateY);
queue.Add(stateR1);
queue.Add(stateR2);
} else {
queue.Add(stateR1.Count <= stateR2.Count ? stateR1 : stateR2);
}
}
}
}
}
// карта получения оптимального состояния по соотвествующему ему простому состоянию
var statesMap = stateAlphabet.Reclassify(optimalStateAlphabet, optimalStates);
// получаем минимальный алфавит
// входные символы не различимы, если Move(s,a1) == Move(s,a2)
var optimalAlphabet = m_transitions
.GroupBy(t => Tuple.Create(statesMap[t.s1], statesMap[t.s2]), t => t.edge);
var alphabetMap = inputAlphabet.Reclassify(optimalInputAlphabet, optimalAlphabet);
// построение автомата
optimalDFA.SetInitialState(statesMap[m_initialState]);
foreach (var sf in m_finalStates.GroupBy(s => statesMap[s]))
optimalDFA.MarkFinalState(sf.Key);
foreach (var t in m_transitions.Select(t => new AutomatonTransition(statesMap[t.s1],statesMap[t.s2],alphabetMap[t.edge])).Distinct())
optimalDFA.Add(t);
}
protected void PrintDFA<TInput, TState>(IAlphabet<TInput> inputAlphabet, IAlphabet<TState> stateAlphabet) {
Safe.ArgumentNotNull(inputAlphabet, "inputAlphabet");
Safe.ArgumentNotNull(stateAlphabet, "stateAlphabet");
var inputMap = inputAlphabet.CreateReverseMap();
var stateMap = stateAlphabet.CreateReverseMap();
for (int i = 0; i < inputMap.Length; i++)
Console.WriteLine("C{0}: {1}", i, String.Join(",", inputMap[i]));
foreach(var t in m_transitions)
Console.WriteLine(
"[{0}] -{{{1}}}-> [{2}]{3}",
stateMap[t.s1],
String.Join(",", inputMap[t.edge]),
stateMap[t.s2],
m_finalStates.Contains(t.s2) ? "$" : ""
);
}
}
}