AsyncQueue.cs
563 lines
| 18.7 KiB
| text/x-csharp
|
CSharpLexer
cin
|
r289 | using System.Threading; | ||
using System.Collections.Generic; | ||||
using System; | ||||
using System.Collections; | ||||
using System.Diagnostics; | ||||
using System.Runtime.CompilerServices; | ||||
namespace Implab.Parallels { | ||||
public class AsyncQueue<T> : IEnumerable<T> { | ||||
class Chunk { | ||||
public volatile Chunk next; | ||||
volatile int m_low; | ||||
volatile int m_hi; | ||||
volatile int m_alloc; | ||||
readonly int m_size; | ||||
readonly T[] m_data; | ||||
public Chunk(int size) { | ||||
m_size = size; | ||||
m_data = new T[size]; | ||||
} | ||||
public Chunk(int size, T value) { | ||||
m_size = size; | ||||
m_hi = 1; | ||||
m_alloc = 1; | ||||
m_data = new T[size]; | ||||
m_data[0] = value; | ||||
} | ||||
public Chunk(int size, int allocated) { | ||||
m_size = size; | ||||
m_hi = allocated; | ||||
m_alloc = allocated; | ||||
m_data = new T[size]; | ||||
} | ||||
public void WriteData(T[] data, int offset, int dest, int length) { | ||||
Array.Copy(data, offset, m_data, dest, length); | ||||
} | ||||
public int Low { | ||||
get { return m_low; } | ||||
} | ||||
public int Hi { | ||||
get { return m_hi; } | ||||
} | ||||
public int Size { | ||||
get { return m_size; } | ||||
} | ||||
[MethodImpl(MethodImplOptions.AggressiveInlining)] | ||||
void AwaitWrites(int mark) { | ||||
if (m_hi != mark) { | ||||
SpinWait spin = new SpinWait(); | ||||
do { | ||||
spin.SpinOnce(); | ||||
} while (m_hi != mark); | ||||
} | ||||
} | ||||
public bool TryEnqueue(T value) { | ||||
int alloc; | ||||
do { | ||||
alloc = m_alloc; | ||||
if (alloc >= m_size) | ||||
return false; | ||||
} while(alloc != Interlocked.CompareExchange(ref m_alloc, alloc + 1, alloc)); | ||||
m_data[alloc] = value; | ||||
AwaitWrites(alloc); | ||||
m_hi = alloc + 1; | ||||
return true; | ||||
} | ||||
/// <summary> | ||||
/// Prevents from allocating new space in the chunk and waits for all write operations to complete | ||||
/// </summary> | ||||
public void Seal() { | ||||
var actual = Math.Min(Interlocked.Exchange(ref m_alloc, m_size), m_size); | ||||
AwaitWrites(actual); | ||||
} | ||||
public bool TryDequeue(out T value, out bool recycle) { | ||||
int low; | ||||
do { | ||||
low = m_low; | ||||
if (low >= m_hi) { | ||||
value = default(T); | ||||
recycle = (low == m_size); | ||||
return false; | ||||
} | ||||
} while (low != Interlocked.CompareExchange(ref m_low, low + 1, low)); | ||||
recycle = (low + 1 == m_size); | ||||
value = m_data[low]; | ||||
return true; | ||||
} | ||||
public bool TryEnqueueBatch(T[] batch, int offset, int length, out int enqueued) { | ||||
int alloc; | ||||
do { | ||||
alloc = m_alloc; | ||||
if (alloc >= m_size) { | ||||
enqueued = 0; | ||||
return false; | ||||
} else { | ||||
enqueued = Math.Min(length, m_size - alloc); | ||||
} | ||||
} while (alloc != Interlocked.CompareExchange(ref m_alloc, alloc + enqueued, alloc)); | ||||
Array.Copy(batch, offset, m_data, alloc, enqueued); | ||||
AwaitWrites(alloc); | ||||
m_hi = alloc + enqueued; | ||||
return true; | ||||
} | ||||
public bool TryDequeueBatch(T[] buffer, int offset, int length, out int dequeued, out bool recycle) { | ||||
int low, hi, batchSize; | ||||
do { | ||||
low = m_low; | ||||
hi = m_hi; | ||||
if (low >= hi) { | ||||
dequeued = 0; | ||||
recycle = (low == m_size); | ||||
return false; | ||||
} | ||||
batchSize = Math.Min(hi - low, length); | ||||
} while (low != Interlocked.CompareExchange(ref m_low, low + batchSize, low)); | ||||
dequeued = batchSize; | ||||
recycle = (low + batchSize == m_size); | ||||
Array.Copy(m_data, low, buffer, offset, batchSize); | ||||
return true; | ||||
} | ||||
public T GetAt(int pos) { | ||||
return m_data[pos]; | ||||
} | ||||
} | ||||
public const int DEFAULT_CHUNK_SIZE = 32; | ||||
public const int MAX_CHUNK_SIZE = 256; | ||||
Chunk m_first; | ||||
Chunk m_last; | ||||
public AsyncQueue() { | ||||
m_first = m_last = new Chunk(DEFAULT_CHUNK_SIZE); | ||||
} | ||||
/// <summary> | ||||
/// Adds the specified value to the queue. | ||||
/// </summary> | ||||
/// <param name="value">Tha value which will be added to the queue.</param> | ||||
public void Enqueue(T value) { | ||||
var last = m_last; | ||||
SpinWait spin = new SpinWait(); | ||||
while (!last.TryEnqueue(value)) { | ||||
// try to extend queue | ||||
var chunk = new Chunk(DEFAULT_CHUNK_SIZE, value); | ||||
var t = Interlocked.CompareExchange(ref m_last, chunk, last); | ||||
if (t == last) { | ||||
last.next = chunk; | ||||
break; | ||||
} else { | ||||
last = t; | ||||
} | ||||
spin.SpinOnce(); | ||||
} | ||||
} | ||||
/// <summary> | ||||
/// Adds the specified data to the queue. | ||||
/// </summary> | ||||
/// <param name="data">The buffer which contains the data to be enqueued.</param> | ||||
/// <param name="offset">The offset of the data in the buffer.</param> | ||||
/// <param name="length">The size of the data to read from the buffer.</param> | ||||
public void EnqueueRange(T[] data, int offset, int length) { | ||||
if (data == null) | ||||
throw new ArgumentNullException("data"); | ||||
if (offset < 0) | ||||
throw new ArgumentOutOfRangeException("offset"); | ||||
if (length < 1 || offset + length > data.Length) | ||||
throw new ArgumentOutOfRangeException("length"); | ||||
while (length > 0) { | ||||
var last = m_last; | ||||
int enqueued; | ||||
if (last.TryEnqueueBatch(data, offset, length, out enqueued)) { | ||||
length -= enqueued; | ||||
offset += enqueued; | ||||
} | ||||
if (length > 0) { | ||||
// we have something to enqueue | ||||
var tail = length % MAX_CHUNK_SIZE; | ||||
var chunk = new Chunk(Math.Max(tail, DEFAULT_CHUNK_SIZE), tail); | ||||
if (last != Interlocked.CompareExchange(ref m_last, chunk, last)) | ||||
continue; // we wasn't able to catch the writer, roundtrip | ||||
// we are lucky | ||||
// we can exclusively write our batch, the other writers will continue their work | ||||
length -= tail; | ||||
for(var i = 0; i < length; i+= MAX_CHUNK_SIZE) { | ||||
var node = new Chunk(MAX_CHUNK_SIZE, MAX_CHUNK_SIZE); | ||||
node.WriteData(data, offset, 0, MAX_CHUNK_SIZE); | ||||
offset += MAX_CHUNK_SIZE; | ||||
// fence last.next is volatile | ||||
last.next = node; | ||||
last = node; | ||||
} | ||||
if (tail > 0) | ||||
chunk.WriteData(data, offset, 0, tail); | ||||
// fence last.next is volatile | ||||
last.next = chunk; | ||||
return; | ||||
} | ||||
} | ||||
} | ||||
/// <summary> | ||||
/// Tries to retrieve the first element from the queue. | ||||
/// </summary> | ||||
/// <returns><c>true</c>, if element is dequeued, <c>false</c> otherwise.</returns> | ||||
/// <param name="value">The value of the dequeued element.</param> | ||||
public bool TryDequeue(out T value) { | ||||
var chunk = m_first; | ||||
do { | ||||
bool recycle; | ||||
var result = chunk.TryDequeue(out value, out recycle); | ||||
if (recycle && chunk.next != null) { | ||||
// this chunk is waste | ||||
chunk = Interlocked.CompareExchange(ref m_first, chunk.next, chunk); | ||||
} else { | ||||
return result; // this chunk is usable and returned actual result | ||||
} | ||||
if (result) // this chunk is waste but the true result is always actual | ||||
return true; | ||||
} while (true); | ||||
} | ||||
/// <summary> | ||||
/// Tries to dequeue the specified amount of data from the queue. | ||||
/// </summary> | ||||
/// <returns><c>true</c>, if data was deuqueued, <c>false</c> otherwise.</returns> | ||||
/// <param name="buffer">The buffer to which the data will be written.</param> | ||||
/// <param name="offset">The offset in the buffer at which the data will be written.</param> | ||||
/// <param name="length">The maximum amount of data to be retrieved.</param> | ||||
/// <param name="dequeued">The actual amout of the retrieved data.</param> | ||||
public bool TryDequeueRange(T[] buffer, int offset, int length, out int dequeued) { | ||||
if (buffer == null) | ||||
throw new ArgumentNullException("buffer"); | ||||
if (offset < 0) | ||||
throw new ArgumentOutOfRangeException("offset"); | ||||
if (length < 1 || offset + length > buffer.Length) | ||||
throw new ArgumentOutOfRangeException("length"); | ||||
var chunk = m_first; | ||||
dequeued = 0; | ||||
do { | ||||
bool recycle; | ||||
int actual; | ||||
if (chunk.TryDequeueBatch(buffer, offset, length, out actual, out recycle)) { | ||||
offset += actual; | ||||
length -= actual; | ||||
dequeued += actual; | ||||
} | ||||
if (recycle && chunk.next != null) { | ||||
// this chunk is waste | ||||
chunk = Interlocked.CompareExchange(ref m_first, chunk.next, chunk); | ||||
} else { | ||||
chunk = null; | ||||
} | ||||
if (length == 0) | ||||
return true; | ||||
} while (chunk != null); | ||||
return dequeued != 0; | ||||
} | ||||
/// <summary> | ||||
/// Tries to dequeue all remaining data in the first chunk. | ||||
/// </summary> | ||||
/// <returns><c>true</c>, if data was dequeued, <c>false</c> otherwise.</returns> | ||||
/// <param name="buffer">The buffer to which the data will be written.</param> | ||||
/// <param name="offset">The offset in the buffer at which the data will be written.</param> | ||||
/// <param name="length">Tha maximum amount of the data to be dequeued.</param> | ||||
/// <param name="dequeued">The actual amount of the dequeued data.</param> | ||||
public bool TryDequeueChunk(T[] buffer, int offset, int length, out int dequeued) { | ||||
if (buffer == null) | ||||
throw new ArgumentNullException("buffer"); | ||||
if (offset < 0) | ||||
throw new ArgumentOutOfRangeException("offset"); | ||||
if (length < 1 || offset + length > buffer.Length) | ||||
throw new ArgumentOutOfRangeException("length"); | ||||
var chunk = m_first; | ||||
do { | ||||
bool recycle; | ||||
chunk.TryDequeueBatch(buffer, offset, length, out dequeued, out recycle); | ||||
if (recycle && chunk.next != null) { | ||||
// this chunk is waste | ||||
chunk = Interlocked.CompareExchange(ref m_first, chunk.next, chunk); | ||||
} else { | ||||
chunk = null; | ||||
} | ||||
// if we have dequeued any data, then return | ||||
if (dequeued != 0) | ||||
return true; | ||||
} while (chunk != null); | ||||
return false; | ||||
} | ||||
public void Clear() { | ||||
// start the new queue | ||||
var chunk = new Chunk(DEFAULT_CHUNK_SIZE); | ||||
do { | ||||
var first = m_first; | ||||
if (first.next == null && first != m_last) { | ||||
continue; | ||||
} | ||||
// here we will create inconsistency which will force others to spin | ||||
// and prevent from fetching. chunk.next = null | ||||
if (first != Interlocked.CompareExchange(ref m_first, chunk, first)) | ||||
continue;// inconsistent | ||||
m_last = chunk; | ||||
return; | ||||
} while (true); | ||||
} | ||||
public List<T> Drain() { | ||||
Chunk chunk = null; | ||||
do { | ||||
var first = m_first; | ||||
// first.next is volatile | ||||
if (first.next == null) { | ||||
if (first != m_last) | ||||
continue; | ||||
else if (first.Hi == first.Low) | ||||
return new List<T>(); | ||||
} | ||||
// start the new queue | ||||
if (chunk == null) | ||||
chunk = new Chunk(DEFAULT_CHUNK_SIZE); | ||||
// here we will create inconsistency which will force others to spin | ||||
// and prevent from fetching. chunk.next = null | ||||
if (first != Interlocked.CompareExchange(ref m_first, chunk, first)) | ||||
continue;// inconsistent | ||||
var last = Interlocked.Exchange(ref m_last, chunk); | ||||
return ReadChunks(first, last); | ||||
} while (true); | ||||
} | ||||
static List<T> ReadChunks(Chunk chunk, object last) { | ||||
var result = new List<T>(); | ||||
var buffer = new T[MAX_CHUNK_SIZE]; | ||||
int actual; | ||||
bool recycle; | ||||
SpinWait spin = new SpinWait(); | ||||
while (chunk != null) { | ||||
// ensure all write operations on the chunk are complete | ||||
chunk.Seal(); | ||||
// we need to read the chunk using this way | ||||
// since some client still may completing the dequeue | ||||
// operation, such clients most likely won't get results | ||||
while (chunk.TryDequeueBatch(buffer, 0, buffer.Length, out actual, out recycle)) | ||||
result.AddRange(new ArraySegmentCollection(buffer, 0, actual)); | ||||
if (chunk == last) { | ||||
chunk = null; | ||||
} else { | ||||
while (chunk.next == null) | ||||
spin.SpinOnce(); | ||||
chunk = chunk.next; | ||||
} | ||||
} | ||||
return result; | ||||
} | ||||
struct ArraySegmentCollection : ICollection<T> { | ||||
readonly T[] m_data; | ||||
readonly int m_offset; | ||||
readonly int m_length; | ||||
public ArraySegmentCollection(T[] data, int offset, int length) { | ||||
m_data = data; | ||||
m_offset = offset; | ||||
m_length = length; | ||||
} | ||||
#region ICollection implementation | ||||
public void Add(T item) { | ||||
throw new NotSupportedException(); | ||||
} | ||||
public void Clear() { | ||||
throw new NotSupportedException(); | ||||
} | ||||
public bool Contains(T item) { | ||||
return false; | ||||
} | ||||
public void CopyTo(T[] array, int arrayIndex) { | ||||
Array.Copy(m_data, m_offset, array, arrayIndex, m_length); | ||||
} | ||||
public bool Remove(T item) { | ||||
throw new NotSupportedException(); | ||||
} | ||||
public int Count { | ||||
get { | ||||
return m_length; | ||||
} | ||||
} | ||||
public bool IsReadOnly { | ||||
get { | ||||
return true; | ||||
} | ||||
} | ||||
#endregion | ||||
#region IEnumerable implementation | ||||
public IEnumerator<T> GetEnumerator() { | ||||
for (int i = m_offset; i < m_length + m_offset; i++) | ||||
yield return m_data[i]; | ||||
} | ||||
#endregion | ||||
#region IEnumerable implementation | ||||
IEnumerator IEnumerable.GetEnumerator() { | ||||
return GetEnumerator(); | ||||
} | ||||
#endregion | ||||
} | ||||
#region IEnumerable implementation | ||||
class Enumerator : IEnumerator<T> { | ||||
Chunk m_current; | ||||
int m_pos = -1; | ||||
public Enumerator(Chunk fisrt) { | ||||
m_current = fisrt; | ||||
} | ||||
#region IEnumerator implementation | ||||
public bool MoveNext() { | ||||
if (m_current == null) | ||||
return false; | ||||
if (m_pos == -1) | ||||
m_pos = m_current.Low; | ||||
else | ||||
m_pos++; | ||||
if (m_pos == m_current.Hi) { | ||||
m_current = m_pos == m_current.Size ? m_current.next : null; | ||||
m_pos = 0; | ||||
if (m_current == null) | ||||
return false; | ||||
} | ||||
return true; | ||||
} | ||||
public void Reset() { | ||||
throw new NotSupportedException(); | ||||
} | ||||
object IEnumerator.Current { | ||||
get { | ||||
return Current; | ||||
} | ||||
} | ||||
#endregion | ||||
#region IDisposable implementation | ||||
public void Dispose() { | ||||
} | ||||
#endregion | ||||
#region IEnumerator implementation | ||||
public T Current { | ||||
get { | ||||
if (m_pos == -1 || m_current == null) | ||||
throw new InvalidOperationException(); | ||||
return m_current.GetAt(m_pos); | ||||
} | ||||
} | ||||
#endregion | ||||
} | ||||
public IEnumerator<T> GetEnumerator() { | ||||
return new Enumerator(m_first); | ||||
} | ||||
#endregion | ||||
#region IEnumerable implementation | ||||
IEnumerator IEnumerable.GetEnumerator() { | ||||
return GetEnumerator(); | ||||
} | ||||
#endregion | ||||
} | ||||
} | ||||