##// END OF EJS Templates
implemented nonblocking wake singnals processing
cin -
r22:5a35900264f5 promises
parent child
Show More
@@ -1,333 +1,333
1 using System;
1 using System;
2 using Microsoft.VisualStudio.TestTools.UnitTesting;
2 using Microsoft.VisualStudio.TestTools.UnitTesting;
3 using System.Reflection;
3 using System.Reflection;
4 using System.Threading;
4 using System.Threading;
5 using Implab.Parallels;
5 using Implab.Parallels;
6
6
7 namespace Implab.Test {
7 namespace Implab.Test {
8 [TestClass]
8 [TestClass]
9 public class AsyncTests {
9 public class AsyncTests {
10 [TestMethod]
10 [TestMethod]
11 public void ResolveTest() {
11 public void ResolveTest() {
12 int res = -1;
12 int res = -1;
13 var p = new Promise<int>();
13 var p = new Promise<int>();
14 p.Then(x => res = x);
14 p.Then(x => res = x);
15 p.Resolve(100);
15 p.Resolve(100);
16
16
17 Assert.AreEqual(100, res);
17 Assert.AreEqual(100, res);
18 }
18 }
19
19
20 [TestMethod]
20 [TestMethod]
21 public void RejectTest() {
21 public void RejectTest() {
22 int res = -1;
22 int res = -1;
23 Exception err = null;
23 Exception err = null;
24
24
25 var p = new Promise<int>();
25 var p = new Promise<int>();
26 p.Then(x => res = x, e => err = e);
26 p.Then(x => res = x, e => err = e);
27 p.Reject(new ApplicationException("error"));
27 p.Reject(new ApplicationException("error"));
28
28
29 Assert.AreEqual(res, -1);
29 Assert.AreEqual(res, -1);
30 Assert.AreEqual(err.Message, "error");
30 Assert.AreEqual(err.Message, "error");
31
31
32 }
32 }
33
33
34 [TestMethod]
34 [TestMethod]
35 public void JoinSuccessTest() {
35 public void JoinSuccessTest() {
36 var p = new Promise<int>();
36 var p = new Promise<int>();
37 p.Resolve(100);
37 p.Resolve(100);
38 Assert.AreEqual(p.Join(), 100);
38 Assert.AreEqual(p.Join(), 100);
39 }
39 }
40
40
41 [TestMethod]
41 [TestMethod]
42 public void JoinFailTest() {
42 public void JoinFailTest() {
43 var p = new Promise<int>();
43 var p = new Promise<int>();
44 p.Reject(new ApplicationException("failed"));
44 p.Reject(new ApplicationException("failed"));
45
45
46 try {
46 try {
47 p.Join();
47 p.Join();
48 throw new ApplicationException("WRONG!");
48 throw new ApplicationException("WRONG!");
49 } catch (TargetInvocationException err) {
49 } catch (TargetInvocationException err) {
50 Assert.AreEqual(err.InnerException.Message, "failed");
50 Assert.AreEqual(err.InnerException.Message, "failed");
51 } catch {
51 } catch {
52 Assert.Fail("Got wrong excaption");
52 Assert.Fail("Got wrong excaption");
53 }
53 }
54 }
54 }
55
55
56 [TestMethod]
56 [TestMethod]
57 public void MapTest() {
57 public void MapTest() {
58 var p = new Promise<int>();
58 var p = new Promise<int>();
59
59
60 var p2 = p.Map(x => x.ToString());
60 var p2 = p.Map(x => x.ToString());
61 p.Resolve(100);
61 p.Resolve(100);
62
62
63 Assert.AreEqual(p2.Join(), "100");
63 Assert.AreEqual(p2.Join(), "100");
64 }
64 }
65
65
66 [TestMethod]
66 [TestMethod]
67 public void FixErrorTest() {
67 public void FixErrorTest() {
68 var p = new Promise<int>();
68 var p = new Promise<int>();
69
69
70 var p2 = p.Error(e => 101);
70 var p2 = p.Error(e => 101);
71
71
72 p.Reject(new Exception());
72 p.Reject(new Exception());
73
73
74 Assert.AreEqual(p2.Join(), 101);
74 Assert.AreEqual(p2.Join(), 101);
75 }
75 }
76
76
77 [TestMethod]
77 [TestMethod]
78 public void ChainTest() {
78 public void ChainTest() {
79 var p1 = new Promise<int>();
79 var p1 = new Promise<int>();
80
80
81 var p3 = p1.Chain(x => {
81 var p3 = p1.Chain(x => {
82 var p2 = new Promise<string>();
82 var p2 = new Promise<string>();
83 p2.Resolve(x.ToString());
83 p2.Resolve(x.ToString());
84 return p2;
84 return p2;
85 });
85 });
86
86
87 p1.Resolve(100);
87 p1.Resolve(100);
88
88
89 Assert.AreEqual(p3.Join(), "100");
89 Assert.AreEqual(p3.Join(), "100");
90 }
90 }
91
91
92 [TestMethod]
92 [TestMethod]
93 public void PoolTest() {
93 public void PoolTest() {
94 var pid = Thread.CurrentThread.ManagedThreadId;
94 var pid = Thread.CurrentThread.ManagedThreadId;
95 var p = AsyncPool.Invoke(() => Thread.CurrentThread.ManagedThreadId);
95 var p = AsyncPool.Invoke(() => Thread.CurrentThread.ManagedThreadId);
96
96
97 Assert.AreNotEqual(pid, p.Join());
97 Assert.AreNotEqual(pid, p.Join());
98 }
98 }
99
99
100 [TestMethod]
100 [TestMethod]
101 public void WorkerPoolSizeTest() {
101 public void WorkerPoolSizeTest() {
102 var pool = new WorkerPool(5, 10, 0);
102 var pool = new WorkerPool(5, 10, 0);
103
103
104 Assert.AreEqual(5, pool.PoolSize);
104 Assert.AreEqual(5, pool.PoolSize);
105
105
106 pool.Invoke(() => { Thread.Sleep(1000000); return 10; });
106 pool.Invoke(() => { Thread.Sleep(100000000); return 10; });
107 pool.Invoke(() => { Thread.Sleep(1000000); return 10; });
107 pool.Invoke(() => { Thread.Sleep(100000000); return 10; });
108 pool.Invoke(() => { Thread.Sleep(1000000); return 10; });
108 pool.Invoke(() => { Thread.Sleep(100000000); return 10; });
109
109
110 Assert.AreEqual(5, pool.PoolSize);
110 Assert.AreEqual(5, pool.PoolSize);
111
111
112 for (int i = 0; i < 100; i++)
112 for (int i = 0; i < 100; i++)
113 pool.Invoke(() => { Thread.Sleep(1000000); return 10; });
113 pool.Invoke(() => { Thread.Sleep(100000000); return 10; });
114 Thread.Sleep(100);
114 Thread.Sleep(200);
115 Assert.AreEqual(10, pool.PoolSize);
115 Assert.AreEqual(10, pool.PoolSize);
116
116
117 pool.Dispose();
117 pool.Dispose();
118 }
118 }
119
119
120 [TestMethod]
120 [TestMethod]
121 public void WorkerPoolCorrectTest() {
121 public void WorkerPoolCorrectTest() {
122 var pool = new WorkerPool(0,1000,100);
122 var pool = new WorkerPool(0,1000,100);
123
123
124 int iterations = 1000;
124 int iterations = 1000;
125 int pending = iterations;
125 int pending = iterations;
126 var stop = new ManualResetEvent(false);
126 var stop = new ManualResetEvent(false);
127
127
128 var count = 0;
128 var count = 0;
129 for (int i = 0; i < iterations; i++) {
129 for (int i = 0; i < iterations; i++) {
130 pool
130 pool
131 .Invoke(() => 1)
131 .Invoke(() => 1)
132 .Then(x => Interlocked.Add(ref count, x))
132 .Then(x => Interlocked.Add(ref count, x))
133 .Then(x => Math.Log10(x))
133 .Then(x => Math.Log10(x))
134 .Anyway(() => {
134 .Anyway(() => {
135 Interlocked.Decrement(ref pending);
135 Interlocked.Decrement(ref pending);
136 if (pending == 0)
136 if (pending == 0)
137 stop.Set();
137 stop.Set();
138 });
138 });
139 }
139 }
140
140
141 stop.WaitOne();
141 stop.WaitOne();
142
142
143 Assert.AreEqual(iterations, count);
143 Assert.AreEqual(iterations, count);
144 Console.WriteLine("Max threads: {0}", pool.MaxRunningThreads);
144 Console.WriteLine("Max threads: {0}", pool.MaxRunningThreads);
145 pool.Dispose();
145 pool.Dispose();
146
146
147 }
147 }
148
148
149 [TestMethod]
149 [TestMethod]
150 public void WorkerPoolDisposeTest() {
150 public void WorkerPoolDisposeTest() {
151 var pool = new WorkerPool(5, 20);
151 var pool = new WorkerPool(5, 20);
152 Assert.AreEqual(5, pool.PoolSize);
152 Assert.AreEqual(5, pool.PoolSize);
153 pool.Dispose();
153 pool.Dispose();
154 Thread.Sleep(500);
154 Thread.Sleep(500);
155 Assert.AreEqual(0, pool.PoolSize);
155 Assert.AreEqual(0, pool.PoolSize);
156 pool.Dispose();
156 pool.Dispose();
157 }
157 }
158
158
159 [TestMethod]
159 [TestMethod]
160 public void MTQueueTest() {
160 public void MTQueueTest() {
161 var queue = new MTQueue<int>();
161 var queue = new MTQueue<int>();
162 int res;
162 int res;
163
163
164 queue.Enqueue(10);
164 queue.Enqueue(10);
165 Assert.IsTrue(queue.TryDequeue(out res));
165 Assert.IsTrue(queue.TryDequeue(out res));
166 Assert.AreEqual(10, res);
166 Assert.AreEqual(10, res);
167 Assert.IsFalse(queue.TryDequeue(out res));
167 Assert.IsFalse(queue.TryDequeue(out res));
168
168
169 for (int i = 0; i < 1000; i++)
169 for (int i = 0; i < 1000; i++)
170 queue.Enqueue(i);
170 queue.Enqueue(i);
171
171
172 for (int i = 0; i < 1000; i++) {
172 for (int i = 0; i < 1000; i++) {
173 queue.TryDequeue(out res);
173 queue.TryDequeue(out res);
174 Assert.AreEqual(i, res);
174 Assert.AreEqual(i, res);
175 }
175 }
176
176
177 int writers = 0;
177 int writers = 0;
178 int readers = 0;
178 int readers = 0;
179 var stop = new ManualResetEvent(false);
179 var stop = new ManualResetEvent(false);
180 int total = 0;
180 int total = 0;
181
181
182 int itemsPerWriter = 1000;
182 int itemsPerWriter = 1000;
183 int writersCount = 3;
183 int writersCount = 3;
184
184
185 for (int i = 0; i < writersCount; i++) {
185 for (int i = 0; i < writersCount; i++) {
186 Interlocked.Increment(ref writers);
186 Interlocked.Increment(ref writers);
187 var wn = i;
187 var wn = i;
188 AsyncPool
188 AsyncPool
189 .InvokeNewThread(() => {
189 .InvokeNewThread(() => {
190 for (int ii = 0; ii < itemsPerWriter; ii++) {
190 for (int ii = 0; ii < itemsPerWriter; ii++) {
191 queue.Enqueue(1);
191 queue.Enqueue(1);
192 }
192 }
193 return 1;
193 return 1;
194 })
194 })
195 .Anyway(() => Interlocked.Decrement(ref writers));
195 .Anyway(() => Interlocked.Decrement(ref writers));
196 }
196 }
197
197
198 for (int i = 0; i < 10; i++) {
198 for (int i = 0; i < 10; i++) {
199 Interlocked.Increment(ref readers);
199 Interlocked.Increment(ref readers);
200 var wn = i;
200 var wn = i;
201 AsyncPool
201 AsyncPool
202 .InvokeNewThread(() => {
202 .InvokeNewThread(() => {
203 int t;
203 int t;
204 do {
204 do {
205 while (queue.TryDequeue(out t))
205 while (queue.TryDequeue(out t))
206 Interlocked.Add(ref total, t);
206 Interlocked.Add(ref total, t);
207 } while (writers > 0);
207 } while (writers > 0);
208 return 1;
208 return 1;
209 })
209 })
210 .Anyway(() => {
210 .Anyway(() => {
211 Interlocked.Decrement(ref readers);
211 Interlocked.Decrement(ref readers);
212 if (readers == 0)
212 if (readers == 0)
213 stop.Set();
213 stop.Set();
214 });
214 });
215 }
215 }
216
216
217 stop.WaitOne();
217 stop.WaitOne();
218
218
219 Assert.AreEqual(itemsPerWriter * writersCount, total);
219 Assert.AreEqual(itemsPerWriter * writersCount, total);
220 }
220 }
221
221
222 [TestMethod]
222 [TestMethod]
223 public void ParallelMapTest() {
223 public void ParallelMapTest() {
224
224
225 int count = 100000;
225 int count = 100000;
226
226
227 double[] args = new double[count];
227 double[] args = new double[count];
228 var rand = new Random();
228 var rand = new Random();
229
229
230 for (int i = 0; i < count; i++)
230 for (int i = 0; i < count; i++)
231 args[i] = rand.NextDouble();
231 args[i] = rand.NextDouble();
232
232
233 var t = Environment.TickCount;
233 var t = Environment.TickCount;
234 var res = args.ParallelMap(x => Math.Sin(x*x), 4).Join();
234 var res = args.ParallelMap(x => Math.Sin(x*x), 4).Join();
235
235
236 Console.WriteLine("Map complete in {0} ms", Environment.TickCount - t);
236 Console.WriteLine("Map complete in {0} ms", Environment.TickCount - t);
237
237
238 t = Environment.TickCount;
238 t = Environment.TickCount;
239 for (int i = 0; i < count; i++)
239 for (int i = 0; i < count; i++)
240 Assert.AreEqual(Math.Sin(args[i] * args[i]), res[i]);
240 Assert.AreEqual(Math.Sin(args[i] * args[i]), res[i]);
241 Console.WriteLine("Verified in {0} ms", Environment.TickCount - t);
241 Console.WriteLine("Verified in {0} ms", Environment.TickCount - t);
242 }
242 }
243
243
244 [TestMethod]
244 [TestMethod]
245 public void ChainedMapTest() {
245 public void ChainedMapTest() {
246
246
247 using (var pool = new WorkerPool(0,100,1)) {
247 using (var pool = new WorkerPool(4,4,0)) {
248 int count = 10000;
248 int count = 10000;
249
249
250 double[] args = new double[count];
250 double[] args = new double[count];
251 var rand = new Random();
251 var rand = new Random();
252
252
253 for (int i = 0; i < count; i++)
253 for (int i = 0; i < count; i++)
254 args[i] = rand.NextDouble();
254 args[i] = rand.NextDouble();
255
255
256 var t = Environment.TickCount;
256 var t = Environment.TickCount;
257 var res = args
257 var res = args
258 .ChainedMap(
258 .ChainedMap(
259 x => pool.Invoke(
259 x => pool.Invoke(
260 () => Math.Sin(x * x)
260 () => Math.Sin(x * x)
261 ),
261 ),
262 4
262 4
263 )
263 )
264 .Join();
264 .Join();
265
265
266 Console.WriteLine("Map complete in {0} ms", Environment.TickCount - t);
266 Console.WriteLine("Map complete in {0} ms", Environment.TickCount - t);
267
267
268 t = Environment.TickCount;
268 t = Environment.TickCount;
269 for (int i = 0; i < count; i++)
269 for (int i = 0; i < count; i++)
270 Assert.AreEqual(Math.Sin(args[i] * args[i]), res[i]);
270 Assert.AreEqual(Math.Sin(args[i] * args[i]), res[i]);
271 Console.WriteLine("Verified in {0} ms", Environment.TickCount - t);
271 Console.WriteLine("Verified in {0} ms", Environment.TickCount - t);
272 Console.WriteLine("Max workers: {0}", pool.MaxRunningThreads);
272 Console.WriteLine("Max workers: {0}", pool.MaxRunningThreads);
273 }
273 }
274 }
274 }
275
275
276 [TestMethod]
276 [TestMethod]
277 public void ParallelForEachTest() {
277 public void ParallelForEachTest() {
278
278
279 int count = 100000;
279 int count = 100000;
280
280
281 int[] args = new int[count];
281 int[] args = new int[count];
282 var rand = new Random();
282 var rand = new Random();
283
283
284 for (int i = 0; i < count; i++)
284 for (int i = 0; i < count; i++)
285 args[i] = (int)(rand.NextDouble() * 100);
285 args[i] = (int)(rand.NextDouble() * 100);
286
286
287 int result = 0;
287 int result = 0;
288
288
289 var t = Environment.TickCount;
289 var t = Environment.TickCount;
290 args.ParallelForEach(x => Interlocked.Add(ref result, x), 4).Join();
290 args.ParallelForEach(x => Interlocked.Add(ref result, x), 4).Join();
291
291
292 Console.WriteLine("Iteration complete in {0} ms, result: {1}", Environment.TickCount - t, result);
292 Console.WriteLine("Iteration complete in {0} ms, result: {1}", Environment.TickCount - t, result);
293
293
294 int result2 = 0;
294 int result2 = 0;
295
295
296 t = Environment.TickCount;
296 t = Environment.TickCount;
297 for (int i = 0; i < count; i++)
297 for (int i = 0; i < count; i++)
298 result2 += args[i];
298 result2 += args[i];
299 Assert.AreEqual(result2, result);
299 Assert.AreEqual(result2, result);
300 Console.WriteLine("Verified in {0} ms", Environment.TickCount - t);
300 Console.WriteLine("Verified in {0} ms", Environment.TickCount - t);
301 }
301 }
302
302
303 [TestMethod]
303 [TestMethod]
304 public void ComplexCase1Test() {
304 public void ComplexCase1Test() {
305 var flags = new bool[3];
305 var flags = new bool[3];
306
306
307 // op1 (aync 200ms) => op2 (async 200ms) => op3 (sync map)
307 // op1 (aync 200ms) => op2 (async 200ms) => op3 (sync map)
308
308
309 var p = PromiseHelper
309 var p = PromiseHelper
310 .Sleep(200, "Alan")
310 .Sleep(200, "Alan")
311 .Cancelled(() => flags[0] = true)
311 .Cancelled(() => flags[0] = true)
312 .Chain(x =>
312 .Chain(x =>
313 PromiseHelper
313 PromiseHelper
314 .Sleep(200, "Hi, " + x)
314 .Sleep(200, "Hi, " + x)
315 .Map(y => y)
315 .Map(y => y)
316 .Cancelled(() => flags[1] = true)
316 .Cancelled(() => flags[1] = true)
317 )
317 )
318 .Cancelled(() => flags[2] = true);
318 .Cancelled(() => flags[2] = true);
319 Thread.Sleep(300);
319 Thread.Sleep(300);
320 p.Cancel();
320 p.Cancel();
321 try {
321 try {
322 Assert.AreEqual(p.Join(), "Hi, Alan");
322 Assert.AreEqual(p.Join(), "Hi, Alan");
323 Assert.Fail("Shouldn't get here");
323 Assert.Fail("Shouldn't get here");
324 } catch (OperationCanceledException) {
324 } catch (OperationCanceledException) {
325 }
325 }
326
326
327 Assert.IsFalse(flags[0]);
327 Assert.IsFalse(flags[0]);
328 Assert.IsTrue(flags[1]);
328 Assert.IsTrue(flags[1]);
329 Assert.IsTrue(flags[2]);
329 Assert.IsTrue(flags[2]);
330 }
330 }
331 }
331 }
332 }
332 }
333
333
1 NO CONTENT: modified file, binary diff hidden
NO CONTENT: modified file, binary diff hidden
@@ -1,302 +1,330
1 using System;
1 using System;
2 using System.Collections.Generic;
2 using System.Collections.Generic;
3 using System.Linq;
3 using System.Linq;
4 using System.Text;
4 using System.Text;
5 using System.Threading;
5 using System.Threading;
6 using System.Diagnostics;
6 using System.Diagnostics;
7
7
8 namespace Implab.Parallels {
8 namespace Implab.Parallels {
9 public abstract class DispatchPool<TUnit> : IDisposable {
9 public abstract class DispatchPool<TUnit> : IDisposable {
10 readonly int m_minThreads;
10 readonly int m_minThreads;
11 readonly int m_maxThreads;
11 readonly int m_maxThreads;
12
12
13 int m_createdThreads = 0; // the current size of the pool
13 int m_createdThreads = 0; // the current size of the pool
14 int m_activeThreads = 0; // the count of threads which are active
14 int m_activeThreads = 0; // the count of threads which are active
15 int m_sleepingThreads = 0; // the count of currently inactive threads
15 int m_sleepingThreads = 0; // the count of currently inactive threads
16 int m_maxRunningThreads = 0; // the meximum reached size of the pool
16 int m_maxRunningThreads = 0; // the meximum reached size of the pool
17 int m_exitRequired = 0; // the pool is going to shutdown, all unused workers are released
17 int m_exitRequired = 0; // the pool is going to shutdown, all unused workers are released
18 int m_releaseTimeout = 100; // the timeout while the working thread will wait for the new tasks before exit
18 int m_releaseTimeout = 100; // the timeout while the working thread will wait for the new tasks before exit
19 int m_wakeEvents = 0; // the count of wake events
19 int m_wakeEvents = 0; // the count of wake events
20
20
21 AutoResetEvent m_hasTasks = new AutoResetEvent(false);
21 AutoResetEvent m_hasTasks = new AutoResetEvent(false);
22
22
23 protected DispatchPool(int min, int max) {
23 protected DispatchPool(int min, int max) {
24 if (min < 0)
24 if (min < 0)
25 throw new ArgumentOutOfRangeException("min");
25 throw new ArgumentOutOfRangeException("min");
26 if (max <= 0)
26 if (max <= 0)
27 throw new ArgumentOutOfRangeException("max");
27 throw new ArgumentOutOfRangeException("max");
28
28
29 if (min > max)
29 if (min > max)
30 min = max;
30 min = max;
31 m_minThreads = min;
31 m_minThreads = min;
32 m_maxThreads = max;
32 m_maxThreads = max;
33 }
33 }
34
34
35 protected DispatchPool(int threads)
35 protected DispatchPool(int threads)
36 : this(threads, threads) {
36 : this(threads, threads) {
37 }
37 }
38
38
39 protected DispatchPool() {
39 protected DispatchPool() {
40 int maxThreads, maxCP;
40 int maxThreads, maxCP;
41 ThreadPool.GetMaxThreads(out maxThreads, out maxCP);
41 ThreadPool.GetMaxThreads(out maxThreads, out maxCP);
42
42
43 m_minThreads = 0;
43 m_minThreads = 0;
44 m_maxThreads = maxThreads;
44 m_maxThreads = maxThreads;
45 }
45 }
46
46
47 protected void InitPool() {
47 protected void InitPool() {
48 for (int i = 0; i < m_minThreads; i++)
48 for (int i = 0; i < m_minThreads; i++)
49 StartWorker();
49 StartWorker();
50 }
50 }
51
51
52 public int PoolSize {
52 public int PoolSize {
53 get {
53 get {
54 return m_createdThreads;
54 return m_createdThreads;
55 }
55 }
56 }
56 }
57
57
58 public int ActiveThreads {
58 public int ActiveThreads {
59 get {
59 get {
60 return m_activeThreads;
60 return m_activeThreads;
61 }
61 }
62 }
62 }
63
63
64 public int MaxRunningThreads {
64 public int MaxRunningThreads {
65 get {
65 get {
66 return m_maxRunningThreads;
66 return m_maxRunningThreads;
67 }
67 }
68 }
68 }
69
69
70 protected bool IsDisposed {
70 protected bool IsDisposed {
71 get {
71 get {
72 return m_exitRequired != 0;
72 return m_exitRequired != 0;
73 }
73 }
74 }
74 }
75
75
76 protected abstract bool TryDequeue(out TUnit unit);
76 protected abstract bool TryDequeue(out TUnit unit);
77
77
78 #region thread execution traits
78 #region thread execution traits
79 int SignalThread() {
79 int SignalThread() {
80 var signals = Interlocked.Increment(ref m_wakeEvents);
80 var signals = Interlocked.Increment(ref m_wakeEvents);
81 if(signals == 1)
81 if(signals == 1)
82 m_hasTasks.Set();
82 m_hasTasks.Set();
83 return signals;
83 return signals;
84 }
84 }
85
85
86 bool FetchSignalOrWait(int timeout) {
87 var start = Environment.TickCount;
88
89 // ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΏΠΎΡ‚ΠΎΠΊ Π²Π»Π°Π΄Π΅Π΅Ρ‚ Π±Π»ΠΎΠΊΠΈΡ€ΠΎΠ²ΠΊΠΎΠΉ ΠΈ ΠΏΡ€ΠΈ ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠΈ сигнала Π΄ΠΎΠ»ΠΆΠ΅Π½
90 // Π΅Π΅ Π²Π΅Ρ€Π½ΡƒΡ‚ΡŒ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π΄Ρ€ΡƒΠ³ΠΎΠΉ ΠΎΠΆΠΈΠ΄Π°ΡŽΡ‰ΠΈΠΉ ΠΏΠΎΡ‚ΠΎΠΊ смог
91 bool hasLock = false;
92 do {
93 int signals;
94 do {
95 signals = m_wakeEvents;
96 if (signals == 0)
97 break;
98 } while (Interlocked.CompareExchange(ref m_wakeEvents, signals - 1, signals) != signals);
99
100 if (signals >= 1) {
101 if (signals > 1 && hasLock)
102 m_hasTasks.Set();
103 return true;
104 }
105
106 if (timeout != -1)
107 timeout = Math.Max(0, timeout - (Environment.TickCount - start));
108
109 // Ссли сигналов большС Π½Π΅ ΠΎΡΡ‚Π°Π»ΠΎΡΡŒ, Ρ‚ΠΎ ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ ΠΏΠΎΡ‚ΠΎΠΊ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ дошСл сюда сбросит событиС
110 // ΠΈ ΡƒΠΉΠ΄Π΅Ρ‚ Π½Π° пустой Ρ†ΠΈΠΊΠ», послС Ρ‡Π΅Π³ΠΎ заблокируСтся
111
112 hasLock = true;
113 } while (m_hasTasks.WaitOne(timeout));
114
115 return false;
116 }
117
86 bool Sleep(int timeout) {
118 bool Sleep(int timeout) {
87 Interlocked.Increment(ref m_sleepingThreads);
119 Interlocked.Increment(ref m_sleepingThreads);
88 if (m_hasTasks.WaitOne(timeout)) {
120 if (FetchSignalOrWait(timeout)) {
89 // this is autoreset event, only one thread can run this block simultaneously
121 Interlocked.Decrement(ref m_sleepingThreads);
90 var sleeping = Interlocked.Decrement(ref m_sleepingThreads);
91 if (Interlocked.Decrement(ref m_wakeEvents) > 0)
92 m_hasTasks.Set(); // wake next worker
93
94 return true;
122 return true;
95 } else {
123 } else {
96 Interlocked.Decrement(ref m_sleepingThreads);
124 Interlocked.Decrement(ref m_sleepingThreads);
97 return false;
125 return false;
98 }
126 }
99 }
127 }
100 #endregion
128 #endregion
101
129
102 /// <summary>
130 /// <summary>
103 /// ЗапускаСт Π»ΠΈΠ±ΠΎ Π½ΠΎΠ²Ρ‹ΠΉ ΠΏΠΎΡ‚ΠΎΠΊ, Ссли Ρ€Π°Π½ΡŒΡˆΠ΅ Π½Π΅ Π±Ρ‹Π»ΠΎ Π½ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ°, Π»ΠΈΠ±ΠΎ устанавливаСт событиС ΠΏΡ€ΠΎΠ±ΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ спящСго ΠΏΠΎΡ‚ΠΎΠΊΠ°
131 /// ЗапускаСт Π»ΠΈΠ±ΠΎ Π½ΠΎΠ²Ρ‹ΠΉ ΠΏΠΎΡ‚ΠΎΠΊ, Ссли Ρ€Π°Π½ΡŒΡˆΠ΅ Π½Π΅ Π±Ρ‹Π»ΠΎ Π½ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ°, Π»ΠΈΠ±ΠΎ устанавливаСт событиС ΠΏΡ€ΠΎΠ±ΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ спящСго ΠΏΠΎΡ‚ΠΎΠΊΠ°
104 /// </summary>
132 /// </summary>
105 protected void GrowPool() {
133 protected void GrowPool() {
106 if (m_exitRequired != 0)
134 if (m_exitRequired != 0)
107 return;
135 return;
108 if (m_sleepingThreads > m_wakeEvents) {
136 if (m_sleepingThreads > m_wakeEvents) {
137 //Console.WriteLine("Waking threads (sleeps {0}, pending {1})", m_sleepingThreads, m_wakeEvents);
138
109 // all sleeping threads may gone
139 // all sleeping threads may gone
110 SignalThread(); // wake a sleeping thread;
140 SignalThread(); // wake a sleeping thread;
111
141
112 // we can't check whether signal has been processed
142 // we can't check whether signal has been processed
113 // anyway it may take some time for the thread to start
143 // anyway it may take some time for the thread to start
114 // we will ensure that at least one thread is running
144 // we will ensure that at least one thread is running
115
145
116 if (AllocateThreadSlot(1)) {
146 if (AllocateThreadSlot(1)) {
117 // if there were no threads in the pool
147 // if there were no threads in the pool
118 var worker = new Thread(this.Worker);
148 var worker = new Thread(this.Worker);
119 worker.IsBackground = true;
149 worker.IsBackground = true;
120 worker.Start();
150 worker.Start();
121 }
151 }
122 } else {
152 } else {
123 // if there is no sleeping threads in the pool
153 // if there is no sleeping threads in the pool
124 StartWorker();
154 StartWorker();
125 }
155 }
126 }
156 }
127
157
128 private bool Suspend() {
158 private bool Suspend() {
129 //no tasks left, exit if the thread is no longer needed
159 //no tasks left, exit if the thread is no longer needed
130 bool last;
160 bool last;
131 bool requestExit;
161 bool requestExit;
132
162
133
134
135 // if threads have a timeout before releasing
163 // if threads have a timeout before releasing
136 if (m_releaseTimeout > 0)
164 if (m_releaseTimeout > 0)
137 requestExit = !Sleep(m_releaseTimeout);
165 requestExit = !Sleep(m_releaseTimeout);
138 else
166 else
139 requestExit = true;
167 requestExit = true;
140
168
141 if (!requestExit)
169 if (!requestExit)
142 return true;
170 return true;
143
171
144 // release unsused thread
172 // release unsused thread
145 if (requestExit && ReleaseThreadSlot(out last)) {
173 if (requestExit && ReleaseThreadSlot(out last)) {
146 // in case at the moment the last thread was being released
174 // in case at the moment the last thread was being released
147 // a new task was added to the queue, we need to try
175 // a new task was added to the queue, we need to try
148 // to revoke the thread to avoid the situation when the task is left unprocessed
176 // to revoke the thread to avoid the situation when the task is left unprocessed
149 if (last && Sleep(0)) { // Sleep(0) will fetch pending task or will return false
177 if (last && Sleep(0)) { // Sleep(0) will fetch pending task or will return false
150 if (AllocateThreadSlot(1))
178 if (AllocateThreadSlot(1))
151 return true; // spin again...
179 return true; // spin again...
152 else
180 else
153 SignalThread(); // since Sleep(0) has fetched the signal we neet to reschedule it
181 SignalThread(); // since Sleep(0) has fetched the signal we neet to reschedule it
154
182
155 }
183 }
156
184
157 return false;
185 return false;
158 }
186 }
159
187
160 // wait till infinity
188 // wait till infinity
161 Sleep(-1);
189 Sleep(-1);
162
190
163 return true;
191 return true;
164 }
192 }
165
193
166 #region thread slots traits
194 #region thread slots traits
167
195
168 bool AllocateThreadSlot() {
196 bool AllocateThreadSlot() {
169 int current;
197 int current;
170 // use spins to allocate slot for the new thread
198 // use spins to allocate slot for the new thread
171 do {
199 do {
172 current = m_createdThreads;
200 current = m_createdThreads;
173 if (current >= m_maxThreads || m_exitRequired != 0)
201 if (current >= m_maxThreads || m_exitRequired != 0)
174 // no more slots left or the pool has been disposed
202 // no more slots left or the pool has been disposed
175 return false;
203 return false;
176 } while (current != Interlocked.CompareExchange(ref m_createdThreads, current + 1, current));
204 } while (current != Interlocked.CompareExchange(ref m_createdThreads, current + 1, current));
177
205
178 UpdateMaxThreads(current + 1);
206 UpdateMaxThreads(current + 1);
179
207
180 return true;
208 return true;
181 }
209 }
182
210
183 bool AllocateThreadSlot(int desired) {
211 bool AllocateThreadSlot(int desired) {
184 if (desired - 1 != Interlocked.CompareExchange(ref m_createdThreads, desired, desired - 1))
212 if (desired - 1 != Interlocked.CompareExchange(ref m_createdThreads, desired, desired - 1))
185 return false;
213 return false;
186
214
187 UpdateMaxThreads(desired);
215 UpdateMaxThreads(desired);
188
216
189 return true;
217 return true;
190 }
218 }
191
219
192 bool ReleaseThreadSlot(out bool last) {
220 bool ReleaseThreadSlot(out bool last) {
193 last = false;
221 last = false;
194 int current;
222 int current;
195 // use spins to release slot for the new thread
223 // use spins to release slot for the new thread
196 do {
224 do {
197 current = m_createdThreads;
225 current = m_createdThreads;
198 if (current <= m_minThreads && m_exitRequired == 0)
226 if (current <= m_minThreads && m_exitRequired == 0)
199 // the thread is reserved
227 // the thread is reserved
200 return false;
228 return false;
201 } while (current != Interlocked.CompareExchange(ref m_createdThreads, current - 1, current));
229 } while (current != Interlocked.CompareExchange(ref m_createdThreads, current - 1, current));
202
230
203 last = (current == 1);
231 last = (current == 1);
204
232
205 return true;
233 return true;
206 }
234 }
207
235
208 /// <summary>
236 /// <summary>
209 /// releases thread slot unconditionally, used during cleanup
237 /// releases thread slot unconditionally, used during cleanup
210 /// </summary>
238 /// </summary>
211 /// <returns>true - no more threads left</returns>
239 /// <returns>true - no more threads left</returns>
212 bool ReleaseThreadSlotAnyway() {
240 bool ReleaseThreadSlotAnyway() {
213 var left = Interlocked.Decrement(ref m_createdThreads);
241 var left = Interlocked.Decrement(ref m_createdThreads);
214 return left == 0;
242 return left == 0;
215 }
243 }
216
244
217 void UpdateMaxThreads(int count) {
245 void UpdateMaxThreads(int count) {
218 int max;
246 int max;
219 do {
247 do {
220 max = m_maxRunningThreads;
248 max = m_maxRunningThreads;
221 if (max >= count)
249 if (max >= count)
222 break;
250 break;
223 } while(max != Interlocked.CompareExchange(ref m_maxRunningThreads, count, max));
251 } while(max != Interlocked.CompareExchange(ref m_maxRunningThreads, count, max));
224 }
252 }
225
253
226 #endregion
254 #endregion
227
255
228 bool StartWorker() {
256 bool StartWorker() {
229 if (AllocateThreadSlot()) {
257 if (AllocateThreadSlot()) {
230 // slot successfully allocated
258 // slot successfully allocated
231 var worker = new Thread(this.Worker);
259 var worker = new Thread(this.Worker);
232 worker.IsBackground = true;
260 worker.IsBackground = true;
233 worker.Start();
261 worker.Start();
234
262
235 return true;
263 return true;
236 } else {
264 } else {
237 return false;
265 return false;
238 }
266 }
239 }
267 }
240
268
241 protected abstract void InvokeUnit(TUnit unit);
269 protected abstract void InvokeUnit(TUnit unit);
242
270
243 void Worker() {
271 void Worker() {
244 TUnit unit;
272 TUnit unit;
273 //Console.WriteLine("{0}: Active", Thread.CurrentThread.ManagedThreadId);
245 Interlocked.Increment(ref m_activeThreads);
274 Interlocked.Increment(ref m_activeThreads);
246 Sleep(0); // remove wake request if the new thread is started
247 do {
275 do {
248 // exit if requested
276 // exit if requested
249 if (m_exitRequired != 0) {
277 if (m_exitRequired != 0) {
250 // release the thread slot
278 // release the thread slot
251 Interlocked.Decrement(ref m_activeThreads);
279 Interlocked.Decrement(ref m_activeThreads);
252 if (ReleaseThreadSlotAnyway()) // it was the last worker
280 if (ReleaseThreadSlotAnyway()) // it was the last worker
253 m_hasTasks.Dispose();
281 m_hasTasks.Dispose();
254 else
282 else
255 SignalThread(); // wake next worker
283 SignalThread(); // wake next worker
256 unit = default(TUnit);
284 unit = default(TUnit);
257 break;
285 break;
258 }
286 }
259
287
260 // fetch task
288 // fetch task
261 if (TryDequeue(out unit)) {
289 if (TryDequeue(out unit)) {
262 InvokeUnit(unit);
290 InvokeUnit(unit);
263 continue;
291 continue;
264 }
292 }
265
293
266 Interlocked.Decrement(ref m_activeThreads);
294 Interlocked.Decrement(ref m_activeThreads);
267
295
268 // entering suspend state
296 // entering suspend state
269 // keep this thread and wait
297 // keep this thread and wait
270 if (!Suspend())
298 if (!Suspend())
271 break;
299 break;
272
300 //Console.WriteLine("{0}: Awake", Thread.CurrentThread.ManagedThreadId);
273 Interlocked.Increment(ref m_activeThreads);
301 Interlocked.Increment(ref m_activeThreads);
274 } while (true);
302 } while (true);
275
303 //Console.WriteLine("{0}: Exited", Thread.CurrentThread.ManagedThreadId);
276 }
304 }
277
305
278 protected virtual void Dispose(bool disposing) {
306 protected virtual void Dispose(bool disposing) {
279 if (disposing) {
307 if (disposing) {
280 if (m_exitRequired == 0) {
308 if (m_exitRequired == 0) {
281 if (Interlocked.CompareExchange(ref m_exitRequired, 1, 0) != 0)
309 if (Interlocked.CompareExchange(ref m_exitRequired, 1, 0) != 0)
282 return;
310 return;
283
311
284 // wake sleeping threads
312 // wake sleeping threads
285 if (m_createdThreads > 0)
313 if (m_createdThreads > 0)
286 SignalThread();
314 SignalThread();
287 else
315 else
288 m_hasTasks.Dispose();
316 m_hasTasks.Dispose();
289 GC.SuppressFinalize(this);
317 GC.SuppressFinalize(this);
290 }
318 }
291 }
319 }
292 }
320 }
293
321
294 public void Dispose() {
322 public void Dispose() {
295 Dispose(true);
323 Dispose(true);
296 }
324 }
297
325
298 ~DispatchPool() {
326 ~DispatchPool() {
299 Dispose(false);
327 Dispose(false);
300 }
328 }
301 }
329 }
302 }
330 }
General Comments 0
You need to be logged in to leave comments. Login now