##// END OF EJS Templates
implemented nonblocking wake singnals processing
cin -
r22:5a35900264f5 promises
parent child
Show More
@@ -1,333 +1,333
1 1 using System;
2 2 using Microsoft.VisualStudio.TestTools.UnitTesting;
3 3 using System.Reflection;
4 4 using System.Threading;
5 5 using Implab.Parallels;
6 6
7 7 namespace Implab.Test {
8 8 [TestClass]
9 9 public class AsyncTests {
10 10 [TestMethod]
11 11 public void ResolveTest() {
12 12 int res = -1;
13 13 var p = new Promise<int>();
14 14 p.Then(x => res = x);
15 15 p.Resolve(100);
16 16
17 17 Assert.AreEqual(100, res);
18 18 }
19 19
20 20 [TestMethod]
21 21 public void RejectTest() {
22 22 int res = -1;
23 23 Exception err = null;
24 24
25 25 var p = new Promise<int>();
26 26 p.Then(x => res = x, e => err = e);
27 27 p.Reject(new ApplicationException("error"));
28 28
29 29 Assert.AreEqual(res, -1);
30 30 Assert.AreEqual(err.Message, "error");
31 31
32 32 }
33 33
34 34 [TestMethod]
35 35 public void JoinSuccessTest() {
36 36 var p = new Promise<int>();
37 37 p.Resolve(100);
38 38 Assert.AreEqual(p.Join(), 100);
39 39 }
40 40
41 41 [TestMethod]
42 42 public void JoinFailTest() {
43 43 var p = new Promise<int>();
44 44 p.Reject(new ApplicationException("failed"));
45 45
46 46 try {
47 47 p.Join();
48 48 throw new ApplicationException("WRONG!");
49 49 } catch (TargetInvocationException err) {
50 50 Assert.AreEqual(err.InnerException.Message, "failed");
51 51 } catch {
52 52 Assert.Fail("Got wrong excaption");
53 53 }
54 54 }
55 55
56 56 [TestMethod]
57 57 public void MapTest() {
58 58 var p = new Promise<int>();
59 59
60 60 var p2 = p.Map(x => x.ToString());
61 61 p.Resolve(100);
62 62
63 63 Assert.AreEqual(p2.Join(), "100");
64 64 }
65 65
66 66 [TestMethod]
67 67 public void FixErrorTest() {
68 68 var p = new Promise<int>();
69 69
70 70 var p2 = p.Error(e => 101);
71 71
72 72 p.Reject(new Exception());
73 73
74 74 Assert.AreEqual(p2.Join(), 101);
75 75 }
76 76
77 77 [TestMethod]
78 78 public void ChainTest() {
79 79 var p1 = new Promise<int>();
80 80
81 81 var p3 = p1.Chain(x => {
82 82 var p2 = new Promise<string>();
83 83 p2.Resolve(x.ToString());
84 84 return p2;
85 85 });
86 86
87 87 p1.Resolve(100);
88 88
89 89 Assert.AreEqual(p3.Join(), "100");
90 90 }
91 91
92 92 [TestMethod]
93 93 public void PoolTest() {
94 94 var pid = Thread.CurrentThread.ManagedThreadId;
95 95 var p = AsyncPool.Invoke(() => Thread.CurrentThread.ManagedThreadId);
96 96
97 97 Assert.AreNotEqual(pid, p.Join());
98 98 }
99 99
100 100 [TestMethod]
101 101 public void WorkerPoolSizeTest() {
102 102 var pool = new WorkerPool(5, 10, 0);
103 103
104 104 Assert.AreEqual(5, pool.PoolSize);
105 105
106 pool.Invoke(() => { Thread.Sleep(1000000); return 10; });
107 pool.Invoke(() => { Thread.Sleep(1000000); return 10; });
108 pool.Invoke(() => { Thread.Sleep(1000000); return 10; });
106 pool.Invoke(() => { Thread.Sleep(100000000); return 10; });
107 pool.Invoke(() => { Thread.Sleep(100000000); return 10; });
108 pool.Invoke(() => { Thread.Sleep(100000000); return 10; });
109 109
110 110 Assert.AreEqual(5, pool.PoolSize);
111 111
112 112 for (int i = 0; i < 100; i++)
113 pool.Invoke(() => { Thread.Sleep(1000000); return 10; });
114 Thread.Sleep(100);
113 pool.Invoke(() => { Thread.Sleep(100000000); return 10; });
114 Thread.Sleep(200);
115 115 Assert.AreEqual(10, pool.PoolSize);
116 116
117 117 pool.Dispose();
118 118 }
119 119
120 120 [TestMethod]
121 121 public void WorkerPoolCorrectTest() {
122 122 var pool = new WorkerPool(0,1000,100);
123 123
124 124 int iterations = 1000;
125 125 int pending = iterations;
126 126 var stop = new ManualResetEvent(false);
127 127
128 128 var count = 0;
129 129 for (int i = 0; i < iterations; i++) {
130 130 pool
131 131 .Invoke(() => 1)
132 132 .Then(x => Interlocked.Add(ref count, x))
133 133 .Then(x => Math.Log10(x))
134 134 .Anyway(() => {
135 135 Interlocked.Decrement(ref pending);
136 136 if (pending == 0)
137 137 stop.Set();
138 138 });
139 139 }
140 140
141 141 stop.WaitOne();
142 142
143 143 Assert.AreEqual(iterations, count);
144 144 Console.WriteLine("Max threads: {0}", pool.MaxRunningThreads);
145 145 pool.Dispose();
146 146
147 147 }
148 148
149 149 [TestMethod]
150 150 public void WorkerPoolDisposeTest() {
151 151 var pool = new WorkerPool(5, 20);
152 152 Assert.AreEqual(5, pool.PoolSize);
153 153 pool.Dispose();
154 154 Thread.Sleep(500);
155 155 Assert.AreEqual(0, pool.PoolSize);
156 156 pool.Dispose();
157 157 }
158 158
159 159 [TestMethod]
160 160 public void MTQueueTest() {
161 161 var queue = new MTQueue<int>();
162 162 int res;
163 163
164 164 queue.Enqueue(10);
165 165 Assert.IsTrue(queue.TryDequeue(out res));
166 166 Assert.AreEqual(10, res);
167 167 Assert.IsFalse(queue.TryDequeue(out res));
168 168
169 169 for (int i = 0; i < 1000; i++)
170 170 queue.Enqueue(i);
171 171
172 172 for (int i = 0; i < 1000; i++) {
173 173 queue.TryDequeue(out res);
174 174 Assert.AreEqual(i, res);
175 175 }
176 176
177 177 int writers = 0;
178 178 int readers = 0;
179 179 var stop = new ManualResetEvent(false);
180 180 int total = 0;
181 181
182 182 int itemsPerWriter = 1000;
183 183 int writersCount = 3;
184 184
185 185 for (int i = 0; i < writersCount; i++) {
186 186 Interlocked.Increment(ref writers);
187 187 var wn = i;
188 188 AsyncPool
189 189 .InvokeNewThread(() => {
190 190 for (int ii = 0; ii < itemsPerWriter; ii++) {
191 191 queue.Enqueue(1);
192 192 }
193 193 return 1;
194 194 })
195 195 .Anyway(() => Interlocked.Decrement(ref writers));
196 196 }
197 197
198 198 for (int i = 0; i < 10; i++) {
199 199 Interlocked.Increment(ref readers);
200 200 var wn = i;
201 201 AsyncPool
202 202 .InvokeNewThread(() => {
203 203 int t;
204 204 do {
205 205 while (queue.TryDequeue(out t))
206 206 Interlocked.Add(ref total, t);
207 207 } while (writers > 0);
208 208 return 1;
209 209 })
210 210 .Anyway(() => {
211 211 Interlocked.Decrement(ref readers);
212 212 if (readers == 0)
213 213 stop.Set();
214 214 });
215 215 }
216 216
217 217 stop.WaitOne();
218 218
219 219 Assert.AreEqual(itemsPerWriter * writersCount, total);
220 220 }
221 221
222 222 [TestMethod]
223 223 public void ParallelMapTest() {
224 224
225 225 int count = 100000;
226 226
227 227 double[] args = new double[count];
228 228 var rand = new Random();
229 229
230 230 for (int i = 0; i < count; i++)
231 231 args[i] = rand.NextDouble();
232 232
233 233 var t = Environment.TickCount;
234 234 var res = args.ParallelMap(x => Math.Sin(x*x), 4).Join();
235 235
236 236 Console.WriteLine("Map complete in {0} ms", Environment.TickCount - t);
237 237
238 238 t = Environment.TickCount;
239 239 for (int i = 0; i < count; i++)
240 240 Assert.AreEqual(Math.Sin(args[i] * args[i]), res[i]);
241 241 Console.WriteLine("Verified in {0} ms", Environment.TickCount - t);
242 242 }
243 243
244 244 [TestMethod]
245 245 public void ChainedMapTest() {
246 246
247 using (var pool = new WorkerPool(0,100,1)) {
247 using (var pool = new WorkerPool(4,4,0)) {
248 248 int count = 10000;
249 249
250 250 double[] args = new double[count];
251 251 var rand = new Random();
252 252
253 253 for (int i = 0; i < count; i++)
254 254 args[i] = rand.NextDouble();
255 255
256 256 var t = Environment.TickCount;
257 257 var res = args
258 258 .ChainedMap(
259 259 x => pool.Invoke(
260 260 () => Math.Sin(x * x)
261 261 ),
262 262 4
263 263 )
264 264 .Join();
265 265
266 266 Console.WriteLine("Map complete in {0} ms", Environment.TickCount - t);
267 267
268 268 t = Environment.TickCount;
269 269 for (int i = 0; i < count; i++)
270 270 Assert.AreEqual(Math.Sin(args[i] * args[i]), res[i]);
271 271 Console.WriteLine("Verified in {0} ms", Environment.TickCount - t);
272 272 Console.WriteLine("Max workers: {0}", pool.MaxRunningThreads);
273 273 }
274 274 }
275 275
276 276 [TestMethod]
277 277 public void ParallelForEachTest() {
278 278
279 279 int count = 100000;
280 280
281 281 int[] args = new int[count];
282 282 var rand = new Random();
283 283
284 284 for (int i = 0; i < count; i++)
285 285 args[i] = (int)(rand.NextDouble() * 100);
286 286
287 287 int result = 0;
288 288
289 289 var t = Environment.TickCount;
290 290 args.ParallelForEach(x => Interlocked.Add(ref result, x), 4).Join();
291 291
292 292 Console.WriteLine("Iteration complete in {0} ms, result: {1}", Environment.TickCount - t, result);
293 293
294 294 int result2 = 0;
295 295
296 296 t = Environment.TickCount;
297 297 for (int i = 0; i < count; i++)
298 298 result2 += args[i];
299 299 Assert.AreEqual(result2, result);
300 300 Console.WriteLine("Verified in {0} ms", Environment.TickCount - t);
301 301 }
302 302
303 303 [TestMethod]
304 304 public void ComplexCase1Test() {
305 305 var flags = new bool[3];
306 306
307 307 // op1 (aync 200ms) => op2 (async 200ms) => op3 (sync map)
308 308
309 309 var p = PromiseHelper
310 310 .Sleep(200, "Alan")
311 311 .Cancelled(() => flags[0] = true)
312 312 .Chain(x =>
313 313 PromiseHelper
314 314 .Sleep(200, "Hi, " + x)
315 315 .Map(y => y)
316 316 .Cancelled(() => flags[1] = true)
317 317 )
318 318 .Cancelled(() => flags[2] = true);
319 319 Thread.Sleep(300);
320 320 p.Cancel();
321 321 try {
322 322 Assert.AreEqual(p.Join(), "Hi, Alan");
323 323 Assert.Fail("Shouldn't get here");
324 324 } catch (OperationCanceledException) {
325 325 }
326 326
327 327 Assert.IsFalse(flags[0]);
328 328 Assert.IsTrue(flags[1]);
329 329 Assert.IsTrue(flags[2]);
330 330 }
331 331 }
332 332 }
333 333
1 NO CONTENT: modified file, binary diff hidden
@@ -1,302 +1,330
1 1 using System;
2 2 using System.Collections.Generic;
3 3 using System.Linq;
4 4 using System.Text;
5 5 using System.Threading;
6 6 using System.Diagnostics;
7 7
8 8 namespace Implab.Parallels {
9 9 public abstract class DispatchPool<TUnit> : IDisposable {
10 10 readonly int m_minThreads;
11 11 readonly int m_maxThreads;
12 12
13 13 int m_createdThreads = 0; // the current size of the pool
14 14 int m_activeThreads = 0; // the count of threads which are active
15 15 int m_sleepingThreads = 0; // the count of currently inactive threads
16 16 int m_maxRunningThreads = 0; // the meximum reached size of the pool
17 17 int m_exitRequired = 0; // the pool is going to shutdown, all unused workers are released
18 18 int m_releaseTimeout = 100; // the timeout while the working thread will wait for the new tasks before exit
19 19 int m_wakeEvents = 0; // the count of wake events
20 20
21 21 AutoResetEvent m_hasTasks = new AutoResetEvent(false);
22 22
23 23 protected DispatchPool(int min, int max) {
24 24 if (min < 0)
25 25 throw new ArgumentOutOfRangeException("min");
26 26 if (max <= 0)
27 27 throw new ArgumentOutOfRangeException("max");
28 28
29 29 if (min > max)
30 30 min = max;
31 31 m_minThreads = min;
32 32 m_maxThreads = max;
33 33 }
34 34
35 35 protected DispatchPool(int threads)
36 36 : this(threads, threads) {
37 37 }
38 38
39 39 protected DispatchPool() {
40 40 int maxThreads, maxCP;
41 41 ThreadPool.GetMaxThreads(out maxThreads, out maxCP);
42 42
43 43 m_minThreads = 0;
44 44 m_maxThreads = maxThreads;
45 45 }
46 46
47 47 protected void InitPool() {
48 48 for (int i = 0; i < m_minThreads; i++)
49 49 StartWorker();
50 50 }
51 51
52 52 public int PoolSize {
53 53 get {
54 54 return m_createdThreads;
55 55 }
56 56 }
57 57
58 58 public int ActiveThreads {
59 59 get {
60 60 return m_activeThreads;
61 61 }
62 62 }
63 63
64 64 public int MaxRunningThreads {
65 65 get {
66 66 return m_maxRunningThreads;
67 67 }
68 68 }
69 69
70 70 protected bool IsDisposed {
71 71 get {
72 72 return m_exitRequired != 0;
73 73 }
74 74 }
75 75
76 76 protected abstract bool TryDequeue(out TUnit unit);
77 77
78 78 #region thread execution traits
79 79 int SignalThread() {
80 80 var signals = Interlocked.Increment(ref m_wakeEvents);
81 81 if(signals == 1)
82 82 m_hasTasks.Set();
83 83 return signals;
84 84 }
85 85
86 bool FetchSignalOrWait(int timeout) {
87 var start = Environment.TickCount;
88
89 // ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΏΠΎΡ‚ΠΎΠΊ Π²Π»Π°Π΄Π΅Π΅Ρ‚ Π±Π»ΠΎΠΊΠΈΡ€ΠΎΠ²ΠΊΠΎΠΉ ΠΈ ΠΏΡ€ΠΈ ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠΈ сигнала Π΄ΠΎΠ»ΠΆΠ΅Π½
90 // Π΅Π΅ Π²Π΅Ρ€Π½ΡƒΡ‚ΡŒ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π΄Ρ€ΡƒΠ³ΠΎΠΉ ΠΎΠΆΠΈΠ΄Π°ΡŽΡ‰ΠΈΠΉ ΠΏΠΎΡ‚ΠΎΠΊ смог
91 bool hasLock = false;
92 do {
93 int signals;
94 do {
95 signals = m_wakeEvents;
96 if (signals == 0)
97 break;
98 } while (Interlocked.CompareExchange(ref m_wakeEvents, signals - 1, signals) != signals);
99
100 if (signals >= 1) {
101 if (signals > 1 && hasLock)
102 m_hasTasks.Set();
103 return true;
104 }
105
106 if (timeout != -1)
107 timeout = Math.Max(0, timeout - (Environment.TickCount - start));
108
109 // Ссли сигналов большС Π½Π΅ ΠΎΡΡ‚Π°Π»ΠΎΡΡŒ, Ρ‚ΠΎ ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ ΠΏΠΎΡ‚ΠΎΠΊ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ дошСл сюда сбросит событиС
110 // ΠΈ ΡƒΠΉΠ΄Π΅Ρ‚ Π½Π° пустой Ρ†ΠΈΠΊΠ», послС Ρ‡Π΅Π³ΠΎ заблокируСтся
111
112 hasLock = true;
113 } while (m_hasTasks.WaitOne(timeout));
114
115 return false;
116 }
117
86 118 bool Sleep(int timeout) {
87 119 Interlocked.Increment(ref m_sleepingThreads);
88 if (m_hasTasks.WaitOne(timeout)) {
89 // this is autoreset event, only one thread can run this block simultaneously
90 var sleeping = Interlocked.Decrement(ref m_sleepingThreads);
91 if (Interlocked.Decrement(ref m_wakeEvents) > 0)
92 m_hasTasks.Set(); // wake next worker
93
120 if (FetchSignalOrWait(timeout)) {
121 Interlocked.Decrement(ref m_sleepingThreads);
94 122 return true;
95 123 } else {
96 124 Interlocked.Decrement(ref m_sleepingThreads);
97 125 return false;
98 126 }
99 127 }
100 128 #endregion
101 129
102 130 /// <summary>
103 131 /// ЗапускаСт Π»ΠΈΠ±ΠΎ Π½ΠΎΠ²Ρ‹ΠΉ ΠΏΠΎΡ‚ΠΎΠΊ, Ссли Ρ€Π°Π½ΡŒΡˆΠ΅ Π½Π΅ Π±Ρ‹Π»ΠΎ Π½ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ°, Π»ΠΈΠ±ΠΎ устанавливаСт событиС ΠΏΡ€ΠΎΠ±ΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ спящСго ΠΏΠΎΡ‚ΠΎΠΊΠ°
104 132 /// </summary>
105 133 protected void GrowPool() {
106 134 if (m_exitRequired != 0)
107 135 return;
108 136 if (m_sleepingThreads > m_wakeEvents) {
137 //Console.WriteLine("Waking threads (sleeps {0}, pending {1})", m_sleepingThreads, m_wakeEvents);
138
109 139 // all sleeping threads may gone
110 140 SignalThread(); // wake a sleeping thread;
111 141
112 142 // we can't check whether signal has been processed
113 143 // anyway it may take some time for the thread to start
114 144 // we will ensure that at least one thread is running
115 145
116 146 if (AllocateThreadSlot(1)) {
117 147 // if there were no threads in the pool
118 148 var worker = new Thread(this.Worker);
119 149 worker.IsBackground = true;
120 150 worker.Start();
121 151 }
122 152 } else {
123 153 // if there is no sleeping threads in the pool
124 154 StartWorker();
125 155 }
126 156 }
127 157
128 158 private bool Suspend() {
129 159 //no tasks left, exit if the thread is no longer needed
130 160 bool last;
131 161 bool requestExit;
132 162
133
134
135 163 // if threads have a timeout before releasing
136 164 if (m_releaseTimeout > 0)
137 165 requestExit = !Sleep(m_releaseTimeout);
138 166 else
139 167 requestExit = true;
140 168
141 169 if (!requestExit)
142 170 return true;
143 171
144 172 // release unsused thread
145 173 if (requestExit && ReleaseThreadSlot(out last)) {
146 174 // in case at the moment the last thread was being released
147 175 // a new task was added to the queue, we need to try
148 176 // to revoke the thread to avoid the situation when the task is left unprocessed
149 177 if (last && Sleep(0)) { // Sleep(0) will fetch pending task or will return false
150 178 if (AllocateThreadSlot(1))
151 179 return true; // spin again...
152 180 else
153 181 SignalThread(); // since Sleep(0) has fetched the signal we neet to reschedule it
154 182
155 183 }
156 184
157 185 return false;
158 186 }
159 187
160 188 // wait till infinity
161 189 Sleep(-1);
162 190
163 191 return true;
164 192 }
165 193
166 194 #region thread slots traits
167 195
168 196 bool AllocateThreadSlot() {
169 197 int current;
170 198 // use spins to allocate slot for the new thread
171 199 do {
172 200 current = m_createdThreads;
173 201 if (current >= m_maxThreads || m_exitRequired != 0)
174 202 // no more slots left or the pool has been disposed
175 203 return false;
176 204 } while (current != Interlocked.CompareExchange(ref m_createdThreads, current + 1, current));
177 205
178 206 UpdateMaxThreads(current + 1);
179 207
180 208 return true;
181 209 }
182 210
183 211 bool AllocateThreadSlot(int desired) {
184 212 if (desired - 1 != Interlocked.CompareExchange(ref m_createdThreads, desired, desired - 1))
185 213 return false;
186 214
187 215 UpdateMaxThreads(desired);
188 216
189 217 return true;
190 218 }
191 219
192 220 bool ReleaseThreadSlot(out bool last) {
193 221 last = false;
194 222 int current;
195 223 // use spins to release slot for the new thread
196 224 do {
197 225 current = m_createdThreads;
198 226 if (current <= m_minThreads && m_exitRequired == 0)
199 227 // the thread is reserved
200 228 return false;
201 229 } while (current != Interlocked.CompareExchange(ref m_createdThreads, current - 1, current));
202 230
203 231 last = (current == 1);
204 232
205 233 return true;
206 234 }
207 235
208 236 /// <summary>
209 237 /// releases thread slot unconditionally, used during cleanup
210 238 /// </summary>
211 239 /// <returns>true - no more threads left</returns>
212 240 bool ReleaseThreadSlotAnyway() {
213 241 var left = Interlocked.Decrement(ref m_createdThreads);
214 242 return left == 0;
215 243 }
216 244
217 245 void UpdateMaxThreads(int count) {
218 246 int max;
219 247 do {
220 248 max = m_maxRunningThreads;
221 249 if (max >= count)
222 250 break;
223 251 } while(max != Interlocked.CompareExchange(ref m_maxRunningThreads, count, max));
224 252 }
225 253
226 254 #endregion
227 255
228 256 bool StartWorker() {
229 257 if (AllocateThreadSlot()) {
230 258 // slot successfully allocated
231 259 var worker = new Thread(this.Worker);
232 260 worker.IsBackground = true;
233 261 worker.Start();
234 262
235 263 return true;
236 264 } else {
237 265 return false;
238 266 }
239 267 }
240 268
241 269 protected abstract void InvokeUnit(TUnit unit);
242 270
243 271 void Worker() {
244 272 TUnit unit;
273 //Console.WriteLine("{0}: Active", Thread.CurrentThread.ManagedThreadId);
245 274 Interlocked.Increment(ref m_activeThreads);
246 Sleep(0); // remove wake request if the new thread is started
247 275 do {
248 276 // exit if requested
249 277 if (m_exitRequired != 0) {
250 278 // release the thread slot
251 279 Interlocked.Decrement(ref m_activeThreads);
252 280 if (ReleaseThreadSlotAnyway()) // it was the last worker
253 281 m_hasTasks.Dispose();
254 282 else
255 283 SignalThread(); // wake next worker
256 284 unit = default(TUnit);
257 285 break;
258 286 }
259 287
260 288 // fetch task
261 289 if (TryDequeue(out unit)) {
262 290 InvokeUnit(unit);
263 291 continue;
264 292 }
265 293
266 294 Interlocked.Decrement(ref m_activeThreads);
267 295
268 296 // entering suspend state
269 297 // keep this thread and wait
270 298 if (!Suspend())
271 299 break;
272
300 //Console.WriteLine("{0}: Awake", Thread.CurrentThread.ManagedThreadId);
273 301 Interlocked.Increment(ref m_activeThreads);
274 302 } while (true);
275
303 //Console.WriteLine("{0}: Exited", Thread.CurrentThread.ManagedThreadId);
276 304 }
277 305
278 306 protected virtual void Dispose(bool disposing) {
279 307 if (disposing) {
280 308 if (m_exitRequired == 0) {
281 309 if (Interlocked.CompareExchange(ref m_exitRequired, 1, 0) != 0)
282 310 return;
283 311
284 312 // wake sleeping threads
285 313 if (m_createdThreads > 0)
286 314 SignalThread();
287 315 else
288 316 m_hasTasks.Dispose();
289 317 GC.SuppressFinalize(this);
290 318 }
291 319 }
292 320 }
293 321
294 322 public void Dispose() {
295 323 Dispose(true);
296 324 }
297 325
298 326 ~DispatchPool() {
299 327 Dispose(false);
300 328 }
301 329 }
302 330 }
General Comments 0
You need to be logged in to leave comments. Login now