##// END OF EJS Templates
fixed race condition in DispatchPool
cin -
r34:dabf79fde388 default
parent child
Show More
@@ -1,386 +1,386
1 using System;
1 using System;
2 using Microsoft.VisualStudio.TestTools.UnitTesting;
2 using Microsoft.VisualStudio.TestTools.UnitTesting;
3 using System.Reflection;
3 using System.Reflection;
4 using System.Threading;
4 using System.Threading;
5 using Implab.Parallels;
5 using Implab.Parallels;
6
6
7 namespace Implab.Test {
7 namespace Implab.Test {
8 [TestClass]
8 [TestClass]
9 public class AsyncTests {
9 public class AsyncTests {
10 [TestMethod]
10 [TestMethod]
11 public void ResolveTest() {
11 public void ResolveTest() {
12 int res = -1;
12 int res = -1;
13 var p = new Promise<int>();
13 var p = new Promise<int>();
14 p.Then(x => res = x);
14 p.Then(x => res = x);
15 p.Resolve(100);
15 p.Resolve(100);
16
16
17 Assert.AreEqual(100, res);
17 Assert.AreEqual(100, res);
18 }
18 }
19
19
20 [TestMethod]
20 [TestMethod]
21 public void RejectTest() {
21 public void RejectTest() {
22 int res = -1;
22 int res = -1;
23 Exception err = null;
23 Exception err = null;
24
24
25 var p = new Promise<int>();
25 var p = new Promise<int>();
26 p.Then(x => res = x, e => err = e);
26 p.Then(x => res = x, e => err = e);
27 p.Reject(new ApplicationException("error"));
27 p.Reject(new ApplicationException("error"));
28
28
29 Assert.AreEqual(res, -1);
29 Assert.AreEqual(res, -1);
30 Assert.AreEqual(err.Message, "error");
30 Assert.AreEqual(err.Message, "error");
31
31
32 }
32 }
33
33
34 [TestMethod]
34 [TestMethod]
35 public void JoinSuccessTest() {
35 public void JoinSuccessTest() {
36 var p = new Promise<int>();
36 var p = new Promise<int>();
37 p.Resolve(100);
37 p.Resolve(100);
38 Assert.AreEqual(p.Join(), 100);
38 Assert.AreEqual(p.Join(), 100);
39 }
39 }
40
40
41 [TestMethod]
41 [TestMethod]
42 public void JoinFailTest() {
42 public void JoinFailTest() {
43 var p = new Promise<int>();
43 var p = new Promise<int>();
44 p.Reject(new ApplicationException("failed"));
44 p.Reject(new ApplicationException("failed"));
45
45
46 try {
46 try {
47 p.Join();
47 p.Join();
48 throw new ApplicationException("WRONG!");
48 throw new ApplicationException("WRONG!");
49 } catch (TargetInvocationException err) {
49 } catch (TargetInvocationException err) {
50 Assert.AreEqual(err.InnerException.Message, "failed");
50 Assert.AreEqual(err.InnerException.Message, "failed");
51 } catch {
51 } catch {
52 Assert.Fail("Got wrong excaption");
52 Assert.Fail("Got wrong excaption");
53 }
53 }
54 }
54 }
55
55
56 [TestMethod]
56 [TestMethod]
57 public void MapTest() {
57 public void MapTest() {
58 var p = new Promise<int>();
58 var p = new Promise<int>();
59
59
60 var p2 = p.Map(x => x.ToString());
60 var p2 = p.Map(x => x.ToString());
61 p.Resolve(100);
61 p.Resolve(100);
62
62
63 Assert.AreEqual(p2.Join(), "100");
63 Assert.AreEqual(p2.Join(), "100");
64 }
64 }
65
65
66 [TestMethod]
66 [TestMethod]
67 public void FixErrorTest() {
67 public void FixErrorTest() {
68 var p = new Promise<int>();
68 var p = new Promise<int>();
69
69
70 var p2 = p.Error(e => 101);
70 var p2 = p.Error(e => 101);
71
71
72 p.Reject(new Exception());
72 p.Reject(new Exception());
73
73
74 Assert.AreEqual(p2.Join(), 101);
74 Assert.AreEqual(p2.Join(), 101);
75 }
75 }
76
76
77 [TestMethod]
77 [TestMethod]
78 public void ChainTest() {
78 public void ChainTest() {
79 var p1 = new Promise<int>();
79 var p1 = new Promise<int>();
80
80
81 var p3 = p1.Chain(x => {
81 var p3 = p1.Chain(x => {
82 var p2 = new Promise<string>();
82 var p2 = new Promise<string>();
83 p2.Resolve(x.ToString());
83 p2.Resolve(x.ToString());
84 return p2;
84 return p2;
85 });
85 });
86
86
87 p1.Resolve(100);
87 p1.Resolve(100);
88
88
89 Assert.AreEqual(p3.Join(), "100");
89 Assert.AreEqual(p3.Join(), "100");
90 }
90 }
91
91
92 [TestMethod]
92 [TestMethod]
93 public void PoolTest() {
93 public void PoolTest() {
94 var pid = Thread.CurrentThread.ManagedThreadId;
94 var pid = Thread.CurrentThread.ManagedThreadId;
95 var p = AsyncPool.Invoke(() => Thread.CurrentThread.ManagedThreadId);
95 var p = AsyncPool.Invoke(() => Thread.CurrentThread.ManagedThreadId);
96
96
97 Assert.AreNotEqual(pid, p.Join());
97 Assert.AreNotEqual(pid, p.Join());
98 }
98 }
99
99
100 [TestMethod]
100 [TestMethod]
101 public void WorkerPoolSizeTest() {
101 public void WorkerPoolSizeTest() {
102 var pool = new WorkerPool(5, 10, 0);
102 var pool = new WorkerPool(5, 10, 0);
103
103
104 Assert.AreEqual(5, pool.PoolSize);
104 Assert.AreEqual(5, pool.PoolSize);
105
105
106 pool.Invoke(() => { Thread.Sleep(100000000); return 10; });
106 pool.Invoke(() => { Thread.Sleep(100000000); return 10; });
107 pool.Invoke(() => { Thread.Sleep(100000000); return 10; });
107 pool.Invoke(() => { Thread.Sleep(100000000); return 10; });
108 pool.Invoke(() => { Thread.Sleep(100000000); return 10; });
108 pool.Invoke(() => { Thread.Sleep(100000000); return 10; });
109
109
110 Assert.AreEqual(5, pool.PoolSize);
110 Assert.AreEqual(5, pool.PoolSize);
111
111
112 for (int i = 0; i < 100; i++)
112 for (int i = 0; i < 100; i++)
113 pool.Invoke(() => { Thread.Sleep(100000000); return 10; });
113 pool.Invoke(() => { Thread.Sleep(100000000); return 10; });
114 Thread.Sleep(200);
114 Thread.Sleep(200);
115 Assert.AreEqual(10, pool.PoolSize);
115 Assert.AreEqual(10, pool.PoolSize);
116
116
117 pool.Dispose();
117 pool.Dispose();
118 }
118 }
119
119
120 [TestMethod]
120 [TestMethod]
121 public void WorkerPoolCorrectTest() {
121 public void WorkerPoolCorrectTest() {
122 var pool = new WorkerPool(0,1000,100);
122 var pool = new WorkerPool(0,1000,100);
123
123
124 int iterations = 1000;
124 int iterations = 1000;
125 int pending = iterations;
125 int pending = iterations;
126 var stop = new ManualResetEvent(false);
126 var stop = new ManualResetEvent(false);
127
127
128 var count = 0;
128 var count = 0;
129 for (int i = 0; i < iterations; i++) {
129 for (int i = 0; i < iterations; i++) {
130 pool
130 pool
131 .Invoke(() => 1)
131 .Invoke(() => 1)
132 .Then(x => Interlocked.Add(ref count, x))
132 .Then(x => Interlocked.Add(ref count, x))
133 .Then(x => Math.Log10(x))
133 .Then(x => Math.Log10(x))
134 .Anyway(() => {
134 .Anyway(() => {
135 Interlocked.Decrement(ref pending);
135 Interlocked.Decrement(ref pending);
136 if (pending == 0)
136 if (pending == 0)
137 stop.Set();
137 stop.Set();
138 });
138 });
139 }
139 }
140
140
141 stop.WaitOne();
141 stop.WaitOne();
142
142
143 Assert.AreEqual(iterations, count);
143 Assert.AreEqual(iterations, count);
144 Console.WriteLine("Max threads: {0}", pool.MaxRunningThreads);
144 Console.WriteLine("Max threads: {0}", pool.MaxRunningThreads);
145 pool.Dispose();
145 pool.Dispose();
146
146
147 }
147 }
148
148
149 [TestMethod]
149 [TestMethod]
150 public void WorkerPoolDisposeTest() {
150 public void WorkerPoolDisposeTest() {
151 var pool = new WorkerPool(5, 20);
151 var pool = new WorkerPool(5, 20);
152 Assert.AreEqual(5, pool.PoolSize);
152 Assert.AreEqual(5, pool.PoolSize);
153 pool.Dispose();
153 pool.Dispose();
154 Thread.Sleep(500);
154 Thread.Sleep(500);
155 Assert.AreEqual(0, pool.PoolSize);
155 Assert.AreEqual(0, pool.PoolSize);
156 pool.Dispose();
156 pool.Dispose();
157 }
157 }
158
158
159 [TestMethod]
159 [TestMethod]
160 public void MTQueueTest() {
160 public void MTQueueTest() {
161 var queue = new MTQueue<int>();
161 var queue = new MTQueue<int>();
162 int res;
162 int res;
163
163
164 queue.Enqueue(10);
164 queue.Enqueue(10);
165 Assert.IsTrue(queue.TryDequeue(out res));
165 Assert.IsTrue(queue.TryDequeue(out res));
166 Assert.AreEqual(10, res);
166 Assert.AreEqual(10, res);
167 Assert.IsFalse(queue.TryDequeue(out res));
167 Assert.IsFalse(queue.TryDequeue(out res));
168
168
169 for (int i = 0; i < 1000; i++)
169 for (int i = 0; i < 1000; i++)
170 queue.Enqueue(i);
170 queue.Enqueue(i);
171
171
172 for (int i = 0; i < 1000; i++) {
172 for (int i = 0; i < 1000; i++) {
173 queue.TryDequeue(out res);
173 queue.TryDequeue(out res);
174 Assert.AreEqual(i, res);
174 Assert.AreEqual(i, res);
175 }
175 }
176
176
177 int writers = 0;
177 int writers = 0;
178 int readers = 0;
178 int readers = 0;
179 var stop = new ManualResetEvent(false);
179 var stop = new ManualResetEvent(false);
180 int total = 0;
180 int total = 0;
181
181
182 int itemsPerWriter = 1000;
182 int itemsPerWriter = 1000;
183 int writersCount = 3;
183 int writersCount = 3;
184
184
185 for (int i = 0; i < writersCount; i++) {
185 for (int i = 0; i < writersCount; i++) {
186 Interlocked.Increment(ref writers);
186 Interlocked.Increment(ref writers);
187 var wn = i;
187 var wn = i;
188 AsyncPool
188 AsyncPool
189 .InvokeNewThread(() => {
189 .InvokeNewThread(() => {
190 for (int ii = 0; ii < itemsPerWriter; ii++) {
190 for (int ii = 0; ii < itemsPerWriter; ii++) {
191 queue.Enqueue(1);
191 queue.Enqueue(1);
192 }
192 }
193 return 1;
193 return 1;
194 })
194 })
195 .Anyway(() => Interlocked.Decrement(ref writers));
195 .Anyway(() => Interlocked.Decrement(ref writers));
196 }
196 }
197
197
198 for (int i = 0; i < 10; i++) {
198 for (int i = 0; i < 10; i++) {
199 Interlocked.Increment(ref readers);
199 Interlocked.Increment(ref readers);
200 var wn = i;
200 var wn = i;
201 AsyncPool
201 AsyncPool
202 .InvokeNewThread(() => {
202 .InvokeNewThread(() => {
203 int t;
203 int t;
204 do {
204 do {
205 while (queue.TryDequeue(out t))
205 while (queue.TryDequeue(out t))
206 Interlocked.Add(ref total, t);
206 Interlocked.Add(ref total, t);
207 } while (writers > 0);
207 } while (writers > 0);
208 return 1;
208 return 1;
209 })
209 })
210 .Anyway(() => {
210 .Anyway(() => {
211 Interlocked.Decrement(ref readers);
211 Interlocked.Decrement(ref readers);
212 if (readers == 0)
212 if (readers == 0)
213 stop.Set();
213 stop.Set();
214 });
214 });
215 }
215 }
216
216
217 stop.WaitOne();
217 stop.WaitOne();
218
218
219 Assert.AreEqual(itemsPerWriter * writersCount, total);
219 Assert.AreEqual(itemsPerWriter * writersCount, total);
220 }
220 }
221
221
222 [TestMethod]
222 [TestMethod]
223 public void ParallelMapTest() {
223 public void ParallelMapTest() {
224
224
225 int count = 100000;
225 int count = 100000;
226
226
227 double[] args = new double[count];
227 double[] args = new double[count];
228 var rand = new Random();
228 var rand = new Random();
229
229
230 for (int i = 0; i < count; i++)
230 for (int i = 0; i < count; i++)
231 args[i] = rand.NextDouble();
231 args[i] = rand.NextDouble();
232
232
233 var t = Environment.TickCount;
233 var t = Environment.TickCount;
234 var res = args.ParallelMap(x => Math.Sin(x*x), 4).Join();
234 var res = args.ParallelMap(x => Math.Sin(x*x), 4).Join();
235
235
236 Console.WriteLine("Map complete in {0} ms", Environment.TickCount - t);
236 Console.WriteLine("Map complete in {0} ms", Environment.TickCount - t);
237
237
238 t = Environment.TickCount;
238 t = Environment.TickCount;
239 for (int i = 0; i < count; i++)
239 for (int i = 0; i < count; i++)
240 Assert.AreEqual(Math.Sin(args[i] * args[i]), res[i]);
240 Assert.AreEqual(Math.Sin(args[i] * args[i]), res[i]);
241 Console.WriteLine("Verified in {0} ms", Environment.TickCount - t);
241 Console.WriteLine("Verified in {0} ms", Environment.TickCount - t);
242 }
242 }
243
243
244 [TestMethod]
244 [TestMethod]
245 public void ChainedMapTest() {
245 public void ChainedMapTest() {
246
246
247 using (var pool = new WorkerPool(0,100,0)) {
247 using (var pool = new WorkerPool(0,100,100)) {
248 int count = 10000;
248 int count = 10000;
249
249
250 double[] args = new double[count];
250 double[] args = new double[count];
251 var rand = new Random();
251 var rand = new Random();
252
252
253 for (int i = 0; i < count; i++)
253 for (int i = 0; i < count; i++)
254 args[i] = rand.NextDouble();
254 args[i] = rand.NextDouble();
255
255
256 var t = Environment.TickCount;
256 var t = Environment.TickCount;
257 var res = args
257 var res = args
258 .ChainedMap(
258 .ChainedMap(
259 x => pool.Invoke(
259 x => pool.Invoke(
260 () => Math.Sin(x * x)
260 () => Math.Sin(x * x)
261 ),
261 ),
262 4
262 4
263 )
263 )
264 .Join();
264 .Join();
265
265
266 Console.WriteLine("Map complete in {0} ms", Environment.TickCount - t);
266 Console.WriteLine("Map complete in {0} ms", Environment.TickCount - t);
267
267
268 t = Environment.TickCount;
268 t = Environment.TickCount;
269 for (int i = 0; i < count; i++)
269 for (int i = 0; i < count; i++)
270 Assert.AreEqual(Math.Sin(args[i] * args[i]), res[i]);
270 Assert.AreEqual(Math.Sin(args[i] * args[i]), res[i]);
271 Console.WriteLine("Verified in {0} ms", Environment.TickCount - t);
271 Console.WriteLine("Verified in {0} ms", Environment.TickCount - t);
272 Console.WriteLine("Max workers: {0}", pool.MaxRunningThreads);
272 Console.WriteLine("Max workers: {0}", pool.MaxRunningThreads);
273 }
273 }
274 }
274 }
275
275
276 [TestMethod]
276 [TestMethod]
277 public void ParallelForEachTest() {
277 public void ParallelForEachTest() {
278
278
279 int count = 100000;
279 int count = 100000;
280
280
281 int[] args = new int[count];
281 int[] args = new int[count];
282 var rand = new Random();
282 var rand = new Random();
283
283
284 for (int i = 0; i < count; i++)
284 for (int i = 0; i < count; i++)
285 args[i] = (int)(rand.NextDouble() * 100);
285 args[i] = (int)(rand.NextDouble() * 100);
286
286
287 int result = 0;
287 int result = 0;
288
288
289 var t = Environment.TickCount;
289 var t = Environment.TickCount;
290 args.ParallelForEach(x => Interlocked.Add(ref result, x), 4).Join();
290 args.ParallelForEach(x => Interlocked.Add(ref result, x), 4).Join();
291
291
292 Console.WriteLine("Iteration complete in {0} ms, result: {1}", Environment.TickCount - t, result);
292 Console.WriteLine("Iteration complete in {0} ms, result: {1}", Environment.TickCount - t, result);
293
293
294 int result2 = 0;
294 int result2 = 0;
295
295
296 t = Environment.TickCount;
296 t = Environment.TickCount;
297 for (int i = 0; i < count; i++)
297 for (int i = 0; i < count; i++)
298 result2 += args[i];
298 result2 += args[i];
299 Assert.AreEqual(result2, result);
299 Assert.AreEqual(result2, result);
300 Console.WriteLine("Verified in {0} ms", Environment.TickCount - t);
300 Console.WriteLine("Verified in {0} ms", Environment.TickCount - t);
301 }
301 }
302
302
303 [TestMethod]
303 [TestMethod]
304 public void ComplexCase1Test() {
304 public void ComplexCase1Test() {
305 var flags = new bool[3];
305 var flags = new bool[3];
306
306
307 // op1 (aync 200ms) => op2 (async 200ms) => op3 (sync map)
307 // op1 (aync 200ms) => op2 (async 200ms) => op3 (sync map)
308
308
309 var p = PromiseHelper
309 var p = PromiseHelper
310 .Sleep(200, "Alan")
310 .Sleep(200, "Alan")
311 .Cancelled(() => flags[0] = true)
311 .Cancelled(() => flags[0] = true)
312 .Chain(x =>
312 .Chain(x =>
313 PromiseHelper
313 PromiseHelper
314 .Sleep(200, "Hi, " + x)
314 .Sleep(200, "Hi, " + x)
315 .Map(y => y)
315 .Map(y => y)
316 .Cancelled(() => flags[1] = true)
316 .Cancelled(() => flags[1] = true)
317 )
317 )
318 .Cancelled(() => flags[2] = true);
318 .Cancelled(() => flags[2] = true);
319 Thread.Sleep(300);
319 Thread.Sleep(300);
320 p.Cancel();
320 p.Cancel();
321 try {
321 try {
322 Assert.AreEqual(p.Join(), "Hi, Alan");
322 Assert.AreEqual(p.Join(), "Hi, Alan");
323 Assert.Fail("Shouldn't get here");
323 Assert.Fail("Shouldn't get here");
324 } catch (OperationCanceledException) {
324 } catch (OperationCanceledException) {
325 }
325 }
326
326
327 Assert.IsFalse(flags[0]);
327 Assert.IsFalse(flags[0]);
328 Assert.IsTrue(flags[1]);
328 Assert.IsTrue(flags[1]);
329 Assert.IsTrue(flags[2]);
329 Assert.IsTrue(flags[2]);
330 }
330 }
331
331
332 [TestMethod]
332 [TestMethod]
333 public void ChainedCancel1Test() {
333 public void ChainedCancel1Test() {
334 // ΠΏΡ€ΠΈ ΠΎΡ‚ΠΌΠ΅Π½Π΅ сцСплСнной асинхронной ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ всС ΠΎΠ±Π΅Ρ‰Π°Π½ΠΈΠ΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ
334 // ΠΏΡ€ΠΈ ΠΎΡ‚ΠΌΠ΅Π½Π΅ сцСплСнной асинхронной ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ всС ΠΎΠ±Π΅Ρ‰Π°Π½ΠΈΠ΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ
335 // Π·Π°Π²Π΅Ρ€ΡˆΠ°Ρ‚ΡŒΡΡ ошибкой OperationCanceledException
335 // Π·Π°Π²Π΅Ρ€ΡˆΠ°Ρ‚ΡŒΡΡ ошибкой OperationCanceledException
336 var p = PromiseHelper
336 var p = PromiseHelper
337 .Sleep(1, "Hi, HAL!")
337 .Sleep(1, "Hi, HAL!")
338 .Chain(x => {
338 .Chain(x => {
339 // запускаСм Π΄Π²Π΅ асинхронныС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ
339 // запускаСм Π΄Π²Π΅ асинхронныС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ
340 var result = PromiseHelper.Sleep(1000, "HEM ENABLED!!!");
340 var result = PromiseHelper.Sleep(1000, "HEM ENABLED!!!");
341 // вторая опСрация отмСняСт ΠΏΠ΅Ρ€Π²ΡƒΡŽ Π΄ΠΎ Π·Π°Π²Π΅Ρ€ΡˆΠ΅Π½ΠΈΡ
341 // вторая опСрация отмСняСт ΠΏΠ΅Ρ€Π²ΡƒΡŽ Π΄ΠΎ Π·Π°Π²Π΅Ρ€ΡˆΠ΅Π½ΠΈΡ
342 PromiseHelper
342 PromiseHelper
343 .Sleep(100, "HAL, STOP!")
343 .Sleep(100, "HAL, STOP!")
344 .Then(() => result.Cancel());
344 .Then(() => result.Cancel());
345 return result;
345 return result;
346 });
346 });
347 try {
347 try {
348 p.Join();
348 p.Join();
349 } catch (TargetInvocationException err) {
349 } catch (TargetInvocationException err) {
350 Assert.IsTrue(err.InnerException is OperationCanceledException);
350 Assert.IsTrue(err.InnerException is OperationCanceledException);
351 }
351 }
352 }
352 }
353
353
354 [TestMethod]
354 [TestMethod]
355 public void ChainedCancel2Test() {
355 public void ChainedCancel2Test() {
356 // ΠΏΡ€ΠΈ ΠΎΡ‚ΠΌΠ΅Π½Π΅ Ρ†Π΅ΠΏΠΎΡ‡ΠΊΠΈ ΠΎΠ±Π΅Ρ‰Π°Π½ΠΈΠΉ, Π²Π»ΠΎΠΆΠ΅Π½Π½Ρ‹Π΅ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ Ρ‚Π°ΠΊΠΆΠ΅ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ ΠΎΡ‚ΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ
356 // ΠΏΡ€ΠΈ ΠΎΡ‚ΠΌΠ΅Π½Π΅ Ρ†Π΅ΠΏΠΎΡ‡ΠΊΠΈ ΠΎΠ±Π΅Ρ‰Π°Π½ΠΈΠΉ, Π²Π»ΠΎΠΆΠ΅Π½Π½Ρ‹Π΅ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ Ρ‚Π°ΠΊΠΆΠ΅ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ ΠΎΡ‚ΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ
357 IPromiseBase p = null;
357 IPromiseBase p = null;
358 var pSurvive = new Promise<bool>();
358 var pSurvive = new Promise<bool>();
359 var hemStarted = new ManualResetEvent(false);
359 var hemStarted = new ManualResetEvent(false);
360 p = PromiseHelper
360 p = PromiseHelper
361 .Sleep(1, "Hi, HAL!")
361 .Sleep(1, "Hi, HAL!")
362 .Chain(x => {
362 .Chain(x => {
363 hemStarted.Set();
363 hemStarted.Set();
364 // запускаСм Π΄Π²Π΅ асинхронныС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ
364 // запускаСм Π΄Π²Π΅ асинхронныС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ
365 var result = PromiseHelper
365 var result = PromiseHelper
366 .Sleep(1000, "HEM ENABLED!!!")
366 .Sleep(1000, "HEM ENABLED!!!")
367 .Then(s => pSurvive.Resolve(false));
367 .Then(s => pSurvive.Resolve(false));
368
368
369 result
369 result
370 .Cancelled(() => pSurvive.Resolve(true));
370 .Cancelled(() => pSurvive.Resolve(true));
371
371
372 return result;
372 return result;
373 });
373 });
374
374
375 hemStarted.WaitOne();
375 hemStarted.WaitOne();
376 p.Cancel();
376 p.Cancel();
377
377
378 try {
378 try {
379 p.Join();
379 p.Join();
380 } catch (OperationCanceledException) {
380 } catch (OperationCanceledException) {
381 Assert.IsTrue(pSurvive.Join());
381 Assert.IsTrue(pSurvive.Join());
382 }
382 }
383 }
383 }
384 }
384 }
385 }
385 }
386
386
1 NO CONTENT: modified file, binary diff hidden
NO CONTENT: modified file, binary diff hidden
@@ -1,335 +1,334
1 using System;
1 using System;
2 using System.Collections.Generic;
2 using System.Collections.Generic;
3 using System.Linq;
3 using System.Linq;
4 using System.Text;
4 using System.Text;
5 using System.Threading;
5 using System.Threading;
6 using System.Diagnostics;
6 using System.Diagnostics;
7
7
8 namespace Implab.Parallels {
8 namespace Implab.Parallels {
9 public abstract class DispatchPool<TUnit> : IDisposable {
9 public abstract class DispatchPool<TUnit> : IDisposable {
10 readonly int m_minThreads;
10 readonly int m_minThreads;
11 readonly int m_maxThreads;
11 readonly int m_maxThreads;
12
12
13 int m_createdThreads = 0; // the current size of the pool
13 int m_createdThreads = 0; // the current size of the pool
14 int m_activeThreads = 0; // the count of threads which are active
14 int m_activeThreads = 0; // the count of threads which are active
15 int m_sleepingThreads = 0; // the count of currently inactive threads
15 int m_sleepingThreads = 0; // the count of currently inactive threads
16 int m_maxRunningThreads = 0; // the meximum reached size of the pool
16 int m_maxRunningThreads = 0; // the meximum reached size of the pool
17 int m_exitRequired = 0; // the pool is going to shutdown, all unused workers are released
17 int m_exitRequired = 0; // the pool is going to shutdown, all unused workers are released
18 int m_releaseTimeout = 100; // the timeout while the working thread will wait for the new tasks before exit
18 int m_releaseTimeout = 100; // the timeout while the working thread will wait for the new tasks before exit
19 int m_wakeEvents = 0; // the count of wake events
19 int m_wakeEvents = 0; // the count of wake events
20
20
21 AutoResetEvent m_hasTasks = new AutoResetEvent(false);
21 AutoResetEvent m_hasTasks = new AutoResetEvent(false);
22
22
23 protected DispatchPool(int min, int max) {
23 protected DispatchPool(int min, int max) {
24 if (min < 0)
24 if (min < 0)
25 throw new ArgumentOutOfRangeException("min");
25 throw new ArgumentOutOfRangeException("min");
26 if (max <= 0)
26 if (max <= 0)
27 throw new ArgumentOutOfRangeException("max");
27 throw new ArgumentOutOfRangeException("max");
28
28
29 if (min > max)
29 if (min > max)
30 min = max;
30 min = max;
31 m_minThreads = min;
31 m_minThreads = min;
32 m_maxThreads = max;
32 m_maxThreads = max;
33 }
33 }
34
34
35 protected DispatchPool(int threads)
35 protected DispatchPool(int threads)
36 : this(threads, threads) {
36 : this(threads, threads) {
37 }
37 }
38
38
39 protected DispatchPool() {
39 protected DispatchPool() {
40 int maxThreads, maxCP;
40 int maxThreads, maxCP;
41 ThreadPool.GetMaxThreads(out maxThreads, out maxCP);
41 ThreadPool.GetMaxThreads(out maxThreads, out maxCP);
42
42
43 m_minThreads = 0;
43 m_minThreads = 0;
44 m_maxThreads = maxThreads;
44 m_maxThreads = maxThreads;
45 }
45 }
46
46
47 protected void InitPool() {
47 protected void InitPool() {
48 for (int i = 0; i < m_minThreads; i++)
48 for (int i = 0; i < m_minThreads; i++)
49 StartWorker();
49 StartWorker();
50 }
50 }
51
51
52 public int PoolSize {
52 public int PoolSize {
53 get {
53 get {
54 return m_createdThreads;
54 return m_createdThreads;
55 }
55 }
56 }
56 }
57
57
58 public int ActiveThreads {
58 public int ActiveThreads {
59 get {
59 get {
60 return m_activeThreads;
60 return m_activeThreads;
61 }
61 }
62 }
62 }
63
63
64 public int MaxRunningThreads {
64 public int MaxRunningThreads {
65 get {
65 get {
66 return m_maxRunningThreads;
66 return m_maxRunningThreads;
67 }
67 }
68 }
68 }
69
69
70 protected bool IsDisposed {
70 protected bool IsDisposed {
71 get {
71 get {
72 return m_exitRequired != 0;
72 return m_exitRequired != 0;
73 }
73 }
74 }
74 }
75
75
76 protected abstract bool TryDequeue(out TUnit unit);
76 protected abstract bool TryDequeue(out TUnit unit);
77
77
78 #region thread execution traits
78 #region thread execution traits
79 int SignalThread() {
79 int SignalThread() {
80 var signals = Interlocked.Increment(ref m_wakeEvents);
80 var signals = Interlocked.Increment(ref m_wakeEvents);
81 if(signals == 1)
81 if(signals == 1)
82 m_hasTasks.Set();
82 m_hasTasks.Set();
83 return signals;
83 return signals;
84 }
84 }
85
85
86 bool FetchSignalOrWait(int timeout) {
86 bool FetchSignalOrWait(int timeout) {
87 var start = Environment.TickCount;
87 var start = Environment.TickCount;
88
88
89 // ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΏΠΎΡ‚ΠΎΠΊ Π²Π»Π°Π΄Π΅Π΅Ρ‚ Π±Π»ΠΎΠΊΠΈΡ€ΠΎΠ²ΠΊΠΎΠΉ ΠΈ ΠΏΡ€ΠΈ ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠΈ сигнала Π΄ΠΎΠ»ΠΆΠ΅Π½
89 // ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΏΠΎΡ‚ΠΎΠΊ Π²Π»Π°Π΄Π΅Π΅Ρ‚ Π±Π»ΠΎΠΊΠΈΡ€ΠΎΠ²ΠΊΠΎΠΉ ΠΈ ΠΏΡ€ΠΈ ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠΈ сигнала Π΄ΠΎΠ»ΠΆΠ΅Π½
90 // Π΅Π΅ Π²Π΅Ρ€Π½ΡƒΡ‚ΡŒ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π΄Ρ€ΡƒΠ³ΠΎΠΉ ΠΎΠΆΠΈΠ΄Π°ΡŽΡ‰ΠΈΠΉ ΠΏΠΎΡ‚ΠΎΠΊ смог
90 // Π΅Π΅ Π²Π΅Ρ€Π½ΡƒΡ‚ΡŒ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π΄Ρ€ΡƒΠ³ΠΎΠΉ ΠΎΠΆΠΈΠ΄Π°ΡŽΡ‰ΠΈΠΉ ΠΏΠΎΡ‚ΠΎΠΊ смог
91 bool hasLock = false;
91 bool hasLock = false;
92 do {
92 do {
93 int signals;
93 int signals;
94 do {
94 do {
95 signals = m_wakeEvents;
95 signals = m_wakeEvents;
96 if (signals == 0)
96 if (signals == 0)
97 break;
97 break;
98 } while (Interlocked.CompareExchange(ref m_wakeEvents, signals - 1, signals) != signals);
98 } while (Interlocked.CompareExchange(ref m_wakeEvents, signals - 1, signals) != signals);
99
99
100 if (signals >= 1) {
100 if (signals >= 1) {
101 if (signals > 1 && hasLock)
101 if (signals > 1 && hasLock)
102 m_hasTasks.Set();
102 m_hasTasks.Set();
103 return true;
103 return true;
104 }
104 }
105
105
106 if (timeout != -1)
106 if (timeout != -1)
107 timeout = Math.Max(0, timeout - (Environment.TickCount - start));
107 timeout = Math.Max(0, timeout - (Environment.TickCount - start));
108
108
109 // Ссли сигналов большС Π½Π΅ ΠΎΡΡ‚Π°Π»ΠΎΡΡŒ, Ρ‚ΠΎ ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ ΠΏΠΎΡ‚ΠΎΠΊ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ дошСл сюда сбросит событиС
109 // Ссли сигналов большС Π½Π΅ ΠΎΡΡ‚Π°Π»ΠΎΡΡŒ, Ρ‚ΠΎ ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ ΠΏΠΎΡ‚ΠΎΠΊ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ дошСл сюда сбросит событиС
110 // ΠΈ ΡƒΠΉΠ΄Π΅Ρ‚ Π½Π° пустой Ρ†ΠΈΠΊΠ», послС Ρ‡Π΅Π³ΠΎ заблокируСтся
110 // ΠΈ ΡƒΠΉΠ΄Π΅Ρ‚ Π½Π° пустой Ρ†ΠΈΠΊΠ», послС Ρ‡Π΅Π³ΠΎ заблокируСтся
111
111
112 hasLock = true;
112 hasLock = true;
113 } while (m_hasTasks.WaitOne(timeout));
113 } while (m_hasTasks.WaitOne(timeout));
114
114
115 return false;
115 return false;
116 }
116 }
117
117
118 bool Sleep(int timeout) {
118 bool Sleep(int timeout) {
119 Interlocked.Increment(ref m_sleepingThreads);
119 Interlocked.Increment(ref m_sleepingThreads);
120 if (FetchSignalOrWait(timeout)) {
120 if (FetchSignalOrWait(timeout)) {
121 Interlocked.Decrement(ref m_sleepingThreads);
121 Interlocked.Decrement(ref m_sleepingThreads);
122 return true;
122 return true;
123 } else {
123 } else {
124 Interlocked.Decrement(ref m_sleepingThreads);
124 Interlocked.Decrement(ref m_sleepingThreads);
125 return false;
125 return false;
126 }
126 }
127 }
127 }
128 #endregion
128 #endregion
129
129
130 /// <summary>
130 /// <summary>
131 /// ЗапускаСт Π»ΠΈΠ±ΠΎ Π½ΠΎΠ²Ρ‹ΠΉ ΠΏΠΎΡ‚ΠΎΠΊ, Ссли Ρ€Π°Π½ΡŒΡˆΠ΅ Π½Π΅ Π±Ρ‹Π»ΠΎ Π½ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ°, Π»ΠΈΠ±ΠΎ устанавливаСт событиС ΠΏΡ€ΠΎΠ±ΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ спящСго ΠΏΠΎΡ‚ΠΎΠΊΠ°
131 /// ЗапускаСт Π»ΠΈΠ±ΠΎ Π½ΠΎΠ²Ρ‹ΠΉ ΠΏΠΎΡ‚ΠΎΠΊ, Ссли Ρ€Π°Π½ΡŒΡˆΠ΅ Π½Π΅ Π±Ρ‹Π»ΠΎ Π½ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ°, Π»ΠΈΠ±ΠΎ устанавливаСт событиС ΠΏΡ€ΠΎΠ±ΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ спящСго ΠΏΠΎΡ‚ΠΎΠΊΠ°
132 /// </summary>
132 /// </summary>
133 protected void GrowPool() {
133 protected void GrowPool() {
134 if (m_exitRequired != 0)
134 if (m_exitRequired != 0)
135 return;
135 return;
136 if (m_sleepingThreads > m_wakeEvents) {
136 if (m_sleepingThreads > m_wakeEvents) {
137 //Console.WriteLine("Waking threads (sleeps {0}, pending {1})", m_sleepingThreads, m_wakeEvents);
137 //Console.WriteLine("Waking threads (sleeps {0}, pending {1})", m_sleepingThreads, m_wakeEvents);
138
138
139 // all sleeping threads may gone
139 // all sleeping threads may gone
140 SignalThread(); // wake a sleeping thread;
140 SignalThread(); // wake a sleeping thread;
141
141
142 // we can't check whether signal has been processed
142 // we can't check whether signal has been processed
143 // anyway it may take some time for the thread to start
143 // anyway it may take some time for the thread to start
144 // we will ensure that at least one thread is running
144 // we will ensure that at least one thread is running
145
145
146 EnsurePoolIsAlive();
146 EnsurePoolIsAlive();
147 } else {
147 } else {
148 // if there is no sleeping threads in the pool
148 // if there is no sleeping threads in the pool
149 if (!StartWorker()) {
149 if (!StartWorker()) {
150 // we haven't started a new thread, but the current can be on the way to terminate and it can't process the queue
150 // we haven't started a new thread, but the current can be on the way to terminate and it can't process the queue
151 // send it a signal to spin again
151 // send it a signal to spin again
152 SignalThread();
152 SignalThread();
153 EnsurePoolIsAlive();
153 EnsurePoolIsAlive();
154 }
154 }
155 }
155 }
156 }
156 }
157
157
158 private void EnsurePoolIsAlive() {
158 protected void EnsurePoolIsAlive() {
159 if (AllocateThreadSlot(1)) {
159 if (AllocateThreadSlot(1)) {
160 // if there were no threads in the pool
160 // if there were no threads in the pool
161 var worker = new Thread(this.Worker);
161 var worker = new Thread(this.Worker);
162 worker.IsBackground = true;
162 worker.IsBackground = true;
163 worker.Start();
163 worker.Start();
164 }
164 }
165 }
165 }
166
166
167 private bool Suspend() {
167 protected virtual bool Suspend() {
168 //no tasks left, exit if the thread is no longer needed
168 //no tasks left, exit if the thread is no longer needed
169 bool last;
169 bool last;
170 bool requestExit;
170 bool requestExit;
171
171
172 // if threads have a timeout before releasing
172 // if threads have a timeout before releasing
173 if (m_releaseTimeout > 0)
173 if (m_releaseTimeout > 0)
174 requestExit = !Sleep(m_releaseTimeout);
174 requestExit = !Sleep(m_releaseTimeout);
175 else
175 else
176 requestExit = true;
176 requestExit = true;
177
177
178 if (!requestExit)
178 if (!requestExit)
179 return true;
179 return true;
180
180
181 // release unsused thread
181 // release unsused thread
182 if (requestExit && ReleaseThreadSlot(out last)) {
182 if (requestExit && ReleaseThreadSlot(out last)) {
183 // in case at the moment the last thread was being released
183 // in case at the moment the last thread was being released
184 // a new task was added to the queue, we need to try
184 // a new task was added to the queue, we need to try
185 // to revoke the thread to avoid the situation when the task is left unprocessed
185 // to revoke the thread to avoid the situation when the task is left unprocessed
186 if (last && FetchSignalOrWait(0)) { // FetchSignalOrWait(0) will fetch pending task or will return false
186 if (last && FetchSignalOrWait(0)) { // FetchSignalOrWait(0) will fetch pending task or will return false
187 SignalThread(); // since FetchSignalOrWait(0) has fetched the signal we need to reschedule it
187 SignalThread(); // since FetchSignalOrWait(0) has fetched the signal we need to reschedule it
188 return AllocateThreadSlot(1); // ensure that at least one thread is alive
188 return AllocateThreadSlot(1); // ensure that at least one thread is alive
189 }
189 }
190
190
191 return false;
191 return false;
192 }
192 }
193
193
194 // wait till infinity
194 // wait till infinity
195 Sleep(-1);
195 Sleep(-1);
196
196
197 return true;
197 return true;
198 }
198 }
199
199
200 #region thread slots traits
200 #region thread slots traits
201
201
202 bool AllocateThreadSlot() {
202 bool AllocateThreadSlot() {
203 int current;
203 int current;
204 // use spins to allocate slot for the new thread
204 // use spins to allocate slot for the new thread
205 do {
205 do {
206 current = m_createdThreads;
206 current = m_createdThreads;
207 if (current >= m_maxThreads || m_exitRequired != 0)
207 if (current >= m_maxThreads || m_exitRequired != 0)
208 // no more slots left or the pool has been disposed
208 // no more slots left or the pool has been disposed
209 return false;
209 return false;
210 } while (current != Interlocked.CompareExchange(ref m_createdThreads, current + 1, current));
210 } while (current != Interlocked.CompareExchange(ref m_createdThreads, current + 1, current));
211
211
212 UpdateMaxThreads(current + 1);
212 UpdateMaxThreads(current + 1);
213
213
214 return true;
214 return true;
215 }
215 }
216
216
217 bool AllocateThreadSlot(int desired) {
217 bool AllocateThreadSlot(int desired) {
218 if (desired - 1 != Interlocked.CompareExchange(ref m_createdThreads, desired, desired - 1))
218 if (desired - 1 != Interlocked.CompareExchange(ref m_createdThreads, desired, desired - 1))
219 return false;
219 return false;
220
220
221 UpdateMaxThreads(desired);
221 UpdateMaxThreads(desired);
222
222
223 return true;
223 return true;
224 }
224 }
225
225
226 bool ReleaseThreadSlot(out bool last) {
226 bool ReleaseThreadSlot(out bool last) {
227 last = false;
227 last = false;
228 int current;
228 int current;
229 // use spins to release slot for the new thread
229 // use spins to release slot for the new thread
230 do {
230 do {
231 current = m_createdThreads;
231 current = m_createdThreads;
232 if (current <= m_minThreads && m_exitRequired == 0)
232 if (current <= m_minThreads && m_exitRequired == 0)
233 // the thread is reserved
233 // the thread is reserved
234 return false;
234 return false;
235 } while (current != Interlocked.CompareExchange(ref m_createdThreads, current - 1, current));
235 } while (current != Interlocked.CompareExchange(ref m_createdThreads, current - 1, current));
236
236
237 last = (current == 1);
237 last = (current == 1);
238
238
239 return true;
239 return true;
240 }
240 }
241
241
242 /// <summary>
242 /// <summary>
243 /// releases thread slot unconditionally, used during cleanup
243 /// releases thread slot unconditionally, used during cleanup
244 /// </summary>
244 /// </summary>
245 /// <returns>true - no more threads left</returns>
245 /// <returns>true - no more threads left</returns>
246 bool ReleaseThreadSlotAnyway() {
246 bool ReleaseThreadSlotAnyway() {
247 var left = Interlocked.Decrement(ref m_createdThreads);
247 var left = Interlocked.Decrement(ref m_createdThreads);
248 return left == 0;
248 return left == 0;
249 }
249 }
250
250
251 void UpdateMaxThreads(int count) {
251 void UpdateMaxThreads(int count) {
252 int max;
252 int max;
253 do {
253 do {
254 max = m_maxRunningThreads;
254 max = m_maxRunningThreads;
255 if (max >= count)
255 if (max >= count)
256 break;
256 break;
257 } while(max != Interlocked.CompareExchange(ref m_maxRunningThreads, count, max));
257 } while(max != Interlocked.CompareExchange(ref m_maxRunningThreads, count, max));
258 }
258 }
259
259
260 #endregion
260 #endregion
261
261
262 bool StartWorker() {
262 bool StartWorker() {
263 if (AllocateThreadSlot()) {
263 if (AllocateThreadSlot()) {
264 // slot successfully allocated
264 // slot successfully allocated
265 var worker = new Thread(this.Worker);
265 var worker = new Thread(this.Worker);
266 worker.IsBackground = true;
266 worker.IsBackground = true;
267 worker.Start();
267 worker.Start();
268
268
269 return true;
269 return true;
270 } else {
270 } else {
271 return false;
271 return false;
272 }
272 }
273 }
273 }
274
274
275 protected abstract void InvokeUnit(TUnit unit);
275 protected abstract void InvokeUnit(TUnit unit);
276
276
277 void Worker() {
277 void Worker() {
278 TUnit unit;
278 TUnit unit;
279 //Console.WriteLine("{0}: Active", Thread.CurrentThread.ManagedThreadId);
279 //Console.WriteLine("{0}: Active", Thread.CurrentThread.ManagedThreadId);
280 Interlocked.Increment(ref m_activeThreads);
280 Interlocked.Increment(ref m_activeThreads);
281 do {
281 do {
282 // exit if requested
282 // exit if requested
283 if (m_exitRequired != 0) {
283 if (m_exitRequired != 0) {
284 // release the thread slot
284 // release the thread slot
285 Interlocked.Decrement(ref m_activeThreads);
285 Interlocked.Decrement(ref m_activeThreads);
286 if (ReleaseThreadSlotAnyway()) // it was the last worker
286 if (ReleaseThreadSlotAnyway()) // it was the last worker
287 m_hasTasks.Dispose();
287 m_hasTasks.Dispose();
288 else
288 else
289 SignalThread(); // wake next worker
289 SignalThread(); // wake next worker
290 break;
290 break;
291 }
291 }
292
292
293 // fetch task
293 // fetch task
294 if (TryDequeue(out unit)) {
294 if (TryDequeue(out unit)) {
295 InvokeUnit(unit);
295 InvokeUnit(unit);
296 continue;
296 continue;
297 }
297 }
298
299 Interlocked.Decrement(ref m_activeThreads);
298 Interlocked.Decrement(ref m_activeThreads);
300
299
301 // entering suspend state
300 // entering suspend state
302 // keep this thread and wait
301 // keep this thread and wait
303 if (!Suspend())
302 if (!Suspend())
304 break;
303 break;
305 //Console.WriteLine("{0}: Awake", Thread.CurrentThread.ManagedThreadId);
304 //Console.WriteLine("{0}: Awake", Thread.CurrentThread.ManagedThreadId);
306 Interlocked.Increment(ref m_activeThreads);
305 Interlocked.Increment(ref m_activeThreads);
307 } while (true);
306 } while (true);
308 //Console.WriteLine("{0}: Exited", Thread.CurrentThread.ManagedThreadId);
307 //Console.WriteLine("{0}: Exited", Thread.CurrentThread.ManagedThreadId);
309 }
308 }
310
309
311 protected virtual void Dispose(bool disposing) {
310 protected virtual void Dispose(bool disposing) {
312 if (disposing) {
311 if (disposing) {
313 if (m_exitRequired == 0) {
312 if (m_exitRequired == 0) {
314 if (Interlocked.CompareExchange(ref m_exitRequired, 1, 0) != 0)
313 if (Interlocked.CompareExchange(ref m_exitRequired, 1, 0) != 0)
315 return;
314 return;
316
315
317 // wake sleeping threads
316 // wake sleeping threads
318 if (m_createdThreads > 0)
317 if (m_createdThreads > 0)
319 SignalThread();
318 SignalThread();
320 else
319 else
321 m_hasTasks.Dispose();
320 m_hasTasks.Dispose();
322 GC.SuppressFinalize(this);
321 GC.SuppressFinalize(this);
323 }
322 }
324 }
323 }
325 }
324 }
326
325
327 public void Dispose() {
326 public void Dispose() {
328 Dispose(true);
327 Dispose(true);
329 }
328 }
330
329
331 ~DispatchPool() {
330 ~DispatchPool() {
332 Dispose(false);
331 Dispose(false);
333 }
332 }
334 }
333 }
335 }
334 }
@@ -1,77 +1,93
1 using System;
1 using System;
2 using System.Collections.Generic;
2 using System.Collections.Generic;
3 using System.Linq;
3 using System.Linq;
4 using System.Text;
4 using System.Text;
5 using System.Threading;
5 using System.Threading;
6 using System.Diagnostics;
6 using System.Diagnostics;
7
7
8 namespace Implab.Parallels {
8 namespace Implab.Parallels {
9 public class WorkerPool : DispatchPool<Action> {
9 public class WorkerPool : DispatchPool<Action> {
10
10
11 MTQueue<Action> m_queue = new MTQueue<Action>();
11 MTQueue<Action> m_queue = new MTQueue<Action>();
12 int m_queueLength = 0;
12 int m_queueLength = 0;
13 readonly int m_threshold = 1;
13 readonly int m_threshold = 1;
14
14
15 public WorkerPool(int minThreads, int maxThreads, int threshold)
15 public WorkerPool(int minThreads, int maxThreads, int threshold)
16 : base(minThreads, maxThreads) {
16 : base(minThreads, maxThreads) {
17 m_threshold = threshold;
17 m_threshold = threshold;
18 InitPool();
18 InitPool();
19 }
19 }
20
20
21 public WorkerPool(int minThreads, int maxThreads) :
21 public WorkerPool(int minThreads, int maxThreads) :
22 base(minThreads, maxThreads) {
22 base(minThreads, maxThreads) {
23 InitPool();
23 InitPool();
24 }
24 }
25
25
26 public WorkerPool(int threads)
26 public WorkerPool(int threads)
27 : base(threads) {
27 : base(threads) {
28 InitPool();
28 InitPool();
29 }
29 }
30
30
31 public WorkerPool()
31 public WorkerPool()
32 : base() {
32 : base() {
33 InitPool();
33 InitPool();
34 }
34 }
35
35
36 public Promise<T> Invoke<T>(Func<T> task) {
36 public Promise<T> Invoke<T>(Func<T> task) {
37 if (task == null)
37 if (task == null)
38 throw new ArgumentNullException("task");
38 throw new ArgumentNullException("task");
39 if (IsDisposed)
39 if (IsDisposed)
40 throw new ObjectDisposedException(ToString());
40 throw new ObjectDisposedException(ToString());
41
41
42 var promise = new Promise<T>();
42 var promise = new Promise<T>();
43
43
44 EnqueueTask(delegate() {
44 EnqueueTask(delegate() {
45 try {
45 try {
46 promise.Resolve(task());
46 promise.Resolve(task());
47 } catch (Exception e) {
47 } catch (Exception e) {
48 promise.Reject(e);
48 promise.Reject(e);
49 }
49 }
50 });
50 });
51
51
52 return promise;
52 return promise;
53 }
53 }
54
54
55 protected void EnqueueTask(Action unit) {
55 protected void EnqueueTask(Action unit) {
56 Debug.Assert(unit != null);
56 Debug.Assert(unit != null);
57 var len = Interlocked.Increment(ref m_queueLength);
57 var len = Interlocked.Increment(ref m_queueLength);
58 m_queue.Enqueue(unit);
58 m_queue.Enqueue(unit);
59
59
60 if (len > m_threshold*ActiveThreads)
60 if (len > m_threshold*ActiveThreads)
61 GrowPool();
61 GrowPool();
62 }
62 }
63
63
64 protected override bool TryDequeue(out Action unit) {
64 protected override bool TryDequeue(out Action unit) {
65 if (m_queue.TryDequeue(out unit)) {
65 if (m_queue.TryDequeue(out unit)) {
66 Interlocked.Decrement(ref m_queueLength);
66 Interlocked.Decrement(ref m_queueLength);
67 return true;
67 return true;
68 }
68 }
69 return false;
69 return false;
70 }
70 }
71
71
72 protected override bool Suspend() {
73 // This override solves race condition
74 // WORKER CLIENT
75 // ---------------------------------------
76 // TryDeque == false
77 // Enqueue(unit), queueLen++
78 // GrowPool? == NO
79 // ActiveThreads--
80 // Suspend
81 // queueLength > 0
82 // continue
83 if (m_queueLength > 0)
84 return true;
85 return base.Suspend();
86 }
87
72 protected override void InvokeUnit(Action unit) {
88 protected override void InvokeUnit(Action unit) {
73 unit();
89 unit();
74 }
90 }
75
91
76 }
92 }
77 }
93 }
General Comments 0
You need to be logged in to leave comments. Login now