|
|
using System;
|
|
|
using System.Collections.Generic;
|
|
|
using System.Linq;
|
|
|
using System.Text;
|
|
|
using System.Threading;
|
|
|
using System.Diagnostics;
|
|
|
|
|
|
namespace Implab.Parallels {
|
|
|
public abstract class DispatchPool<TUnit> : IDisposable {
|
|
|
readonly int m_minThreads;
|
|
|
readonly int m_maxThreads;
|
|
|
|
|
|
int m_createdThreads = 0; // the current size of the pool
|
|
|
int m_activeThreads = 0; // the count of threads which are active
|
|
|
int m_sleepingThreads = 0; // the count of currently inactive threads
|
|
|
int m_maxRunningThreads = 0; // the meximum reached size of the pool
|
|
|
int m_exitRequired = 0; // the pool is going to shutdown, all unused workers are released
|
|
|
int m_releaseTimeout = 100; // the timeout while the working thread will wait for the new tasks before exit
|
|
|
int m_wakeEvents = 0; // the count of wake events
|
|
|
|
|
|
AutoResetEvent m_hasTasks = new AutoResetEvent(false);
|
|
|
|
|
|
protected DispatchPool(int min, int max) {
|
|
|
if (min < 0)
|
|
|
throw new ArgumentOutOfRangeException("min");
|
|
|
if (max <= 0)
|
|
|
throw new ArgumentOutOfRangeException("max");
|
|
|
|
|
|
if (min > max)
|
|
|
min = max;
|
|
|
m_minThreads = min;
|
|
|
m_maxThreads = max;
|
|
|
}
|
|
|
|
|
|
protected DispatchPool(int threads)
|
|
|
: this(threads, threads) {
|
|
|
}
|
|
|
|
|
|
protected DispatchPool() {
|
|
|
int maxThreads, maxCP;
|
|
|
ThreadPool.GetMaxThreads(out maxThreads, out maxCP);
|
|
|
|
|
|
m_minThreads = 0;
|
|
|
m_maxThreads = maxThreads;
|
|
|
}
|
|
|
|
|
|
protected void InitPool() {
|
|
|
for (int i = 0; i < m_minThreads; i++)
|
|
|
StartWorker();
|
|
|
}
|
|
|
|
|
|
public int PoolSize {
|
|
|
get {
|
|
|
return m_createdThreads;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
public int ActiveThreads {
|
|
|
get {
|
|
|
return m_activeThreads;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
public int MaxRunningThreads {
|
|
|
get {
|
|
|
return m_maxRunningThreads;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
protected bool IsDisposed {
|
|
|
get {
|
|
|
return m_exitRequired != 0;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
protected abstract bool TryDequeue(out TUnit unit);
|
|
|
|
|
|
#region thread execution traits
|
|
|
int SignalThread() {
|
|
|
var signals = Interlocked.Increment(ref m_wakeEvents);
|
|
|
if(signals == 1)
|
|
|
m_hasTasks.Set();
|
|
|
return signals;
|
|
|
}
|
|
|
|
|
|
bool FetchSignalOrWait(int timeout) {
|
|
|
var start = Environment.TickCount;
|
|
|
|
|
|
// означает, что поток владеет блокировкой и при успешном получении сигнала должен
|
|
|
// ее вернуть, чтобы другой ожидающий поток смог
|
|
|
bool hasLock = false;
|
|
|
do {
|
|
|
int signals;
|
|
|
do {
|
|
|
signals = m_wakeEvents;
|
|
|
if (signals == 0)
|
|
|
break;
|
|
|
} while (Interlocked.CompareExchange(ref m_wakeEvents, signals - 1, signals) != signals);
|
|
|
|
|
|
if (signals >= 1) {
|
|
|
if (signals > 1 && hasLock)
|
|
|
m_hasTasks.Set();
|
|
|
return true;
|
|
|
}
|
|
|
|
|
|
if (timeout != -1)
|
|
|
timeout = Math.Max(0, timeout - (Environment.TickCount - start));
|
|
|
|
|
|
// если сигналов больше не осталось, то первый поток, который дошел сюда сбросит событие
|
|
|
// и уйдет на пустой цикл, после чего заблокируется
|
|
|
|
|
|
hasLock = true;
|
|
|
} while (m_hasTasks.WaitOne(timeout));
|
|
|
|
|
|
return false;
|
|
|
}
|
|
|
|
|
|
bool Sleep(int timeout) {
|
|
|
Interlocked.Increment(ref m_sleepingThreads);
|
|
|
if (FetchSignalOrWait(timeout)) {
|
|
|
Interlocked.Decrement(ref m_sleepingThreads);
|
|
|
return true;
|
|
|
} else {
|
|
|
Interlocked.Decrement(ref m_sleepingThreads);
|
|
|
return false;
|
|
|
}
|
|
|
}
|
|
|
#endregion
|
|
|
|
|
|
/// <summary>
|
|
|
/// Запускает либо новый поток, если раньше не было ни одного потока, либо устанавливает событие пробуждение одного спящего потока
|
|
|
/// </summary>
|
|
|
protected void GrowPool() {
|
|
|
if (m_exitRequired != 0)
|
|
|
return;
|
|
|
if (m_sleepingThreads > m_wakeEvents) {
|
|
|
//Console.WriteLine("Waking threads (sleeps {0}, pending {1})", m_sleepingThreads, m_wakeEvents);
|
|
|
|
|
|
// all sleeping threads may gone
|
|
|
SignalThread(); // wake a sleeping thread;
|
|
|
|
|
|
// we can't check whether signal has been processed
|
|
|
// anyway it may take some time for the thread to start
|
|
|
// we will ensure that at least one thread is running
|
|
|
|
|
|
EnsurePoolIsAlive();
|
|
|
} else {
|
|
|
// if there is no sleeping threads in the pool
|
|
|
if (!StartWorker()) {
|
|
|
// we haven't started a new thread, but the current can be on the way to terminate and it can't process the queue
|
|
|
// send it a signal to spin again
|
|
|
SignalThread();
|
|
|
EnsurePoolIsAlive();
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
protected void EnsurePoolIsAlive() {
|
|
|
if (AllocateThreadSlot(1)) {
|
|
|
// if there were no threads in the pool
|
|
|
var worker = new Thread(this.Worker);
|
|
|
worker.IsBackground = true;
|
|
|
worker.Start();
|
|
|
}
|
|
|
}
|
|
|
|
|
|
protected virtual bool Suspend() {
|
|
|
//no tasks left, exit if the thread is no longer needed
|
|
|
bool last;
|
|
|
bool requestExit;
|
|
|
|
|
|
// if threads have a timeout before releasing
|
|
|
if (m_releaseTimeout > 0)
|
|
|
requestExit = !Sleep(m_releaseTimeout);
|
|
|
else
|
|
|
requestExit = true;
|
|
|
|
|
|
if (!requestExit)
|
|
|
return true;
|
|
|
|
|
|
// release unsused thread
|
|
|
if (requestExit && ReleaseThreadSlot(out last)) {
|
|
|
// in case at the moment the last thread was being released
|
|
|
// a new task was added to the queue, we need to try
|
|
|
// to revoke the thread to avoid the situation when the task is left unprocessed
|
|
|
if (last && FetchSignalOrWait(0)) { // FetchSignalOrWait(0) will fetch pending task or will return false
|
|
|
SignalThread(); // since FetchSignalOrWait(0) has fetched the signal we need to reschedule it
|
|
|
return AllocateThreadSlot(1); // ensure that at least one thread is alive
|
|
|
}
|
|
|
|
|
|
return false;
|
|
|
}
|
|
|
|
|
|
// wait till infinity
|
|
|
Sleep(-1);
|
|
|
|
|
|
return true;
|
|
|
}
|
|
|
|
|
|
#region thread slots traits
|
|
|
|
|
|
bool AllocateThreadSlot() {
|
|
|
int current;
|
|
|
// use spins to allocate slot for the new thread
|
|
|
do {
|
|
|
current = m_createdThreads;
|
|
|
if (current >= m_maxThreads || m_exitRequired != 0)
|
|
|
// no more slots left or the pool has been disposed
|
|
|
return false;
|
|
|
} while (current != Interlocked.CompareExchange(ref m_createdThreads, current + 1, current));
|
|
|
|
|
|
UpdateMaxThreads(current + 1);
|
|
|
|
|
|
return true;
|
|
|
}
|
|
|
|
|
|
bool AllocateThreadSlot(int desired) {
|
|
|
if (desired - 1 != Interlocked.CompareExchange(ref m_createdThreads, desired, desired - 1))
|
|
|
return false;
|
|
|
|
|
|
UpdateMaxThreads(desired);
|
|
|
|
|
|
return true;
|
|
|
}
|
|
|
|
|
|
bool ReleaseThreadSlot(out bool last) {
|
|
|
last = false;
|
|
|
int current;
|
|
|
// use spins to release slot for the new thread
|
|
|
do {
|
|
|
current = m_createdThreads;
|
|
|
if (current <= m_minThreads && m_exitRequired == 0)
|
|
|
// the thread is reserved
|
|
|
return false;
|
|
|
} while (current != Interlocked.CompareExchange(ref m_createdThreads, current - 1, current));
|
|
|
|
|
|
last = (current == 1);
|
|
|
|
|
|
return true;
|
|
|
}
|
|
|
|
|
|
/// <summary>
|
|
|
/// releases thread slot unconditionally, used during cleanup
|
|
|
/// </summary>
|
|
|
/// <returns>true - no more threads left</returns>
|
|
|
bool ReleaseThreadSlotAnyway() {
|
|
|
var left = Interlocked.Decrement(ref m_createdThreads);
|
|
|
return left == 0;
|
|
|
}
|
|
|
|
|
|
void UpdateMaxThreads(int count) {
|
|
|
int max;
|
|
|
do {
|
|
|
max = m_maxRunningThreads;
|
|
|
if (max >= count)
|
|
|
break;
|
|
|
} while(max != Interlocked.CompareExchange(ref m_maxRunningThreads, count, max));
|
|
|
}
|
|
|
|
|
|
#endregion
|
|
|
|
|
|
bool StartWorker() {
|
|
|
if (AllocateThreadSlot()) {
|
|
|
// slot successfully allocated
|
|
|
var worker = new Thread(this.Worker);
|
|
|
worker.IsBackground = true;
|
|
|
worker.Start();
|
|
|
|
|
|
return true;
|
|
|
} else {
|
|
|
return false;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
protected abstract void InvokeUnit(TUnit unit);
|
|
|
|
|
|
protected virtual void Worker() {
|
|
|
TUnit unit;
|
|
|
//Console.WriteLine("{0}: Active", Thread.CurrentThread.ManagedThreadId);
|
|
|
Interlocked.Increment(ref m_activeThreads);
|
|
|
do {
|
|
|
// exit if requested
|
|
|
if (m_exitRequired != 0) {
|
|
|
// release the thread slot
|
|
|
Interlocked.Decrement(ref m_activeThreads);
|
|
|
if (ReleaseThreadSlotAnyway()) // it was the last worker
|
|
|
m_hasTasks.Dispose();
|
|
|
else
|
|
|
SignalThread(); // wake next worker
|
|
|
break;
|
|
|
}
|
|
|
|
|
|
// fetch task
|
|
|
if (TryDequeue(out unit)) {
|
|
|
InvokeUnit(unit);
|
|
|
continue;
|
|
|
}
|
|
|
Interlocked.Decrement(ref m_activeThreads);
|
|
|
|
|
|
// entering suspend state
|
|
|
// keep this thread and wait
|
|
|
if (!Suspend())
|
|
|
break;
|
|
|
//Console.WriteLine("{0}: Awake", Thread.CurrentThread.ManagedThreadId);
|
|
|
Interlocked.Increment(ref m_activeThreads);
|
|
|
} while (true);
|
|
|
//Console.WriteLine("{0}: Exited", Thread.CurrentThread.ManagedThreadId);
|
|
|
}
|
|
|
|
|
|
protected virtual void Dispose(bool disposing) {
|
|
|
if (disposing) {
|
|
|
if (m_exitRequired == 0) {
|
|
|
if (Interlocked.CompareExchange(ref m_exitRequired, 1, 0) != 0)
|
|
|
return;
|
|
|
|
|
|
// wake sleeping threads
|
|
|
if (m_createdThreads > 0)
|
|
|
SignalThread();
|
|
|
else
|
|
|
m_hasTasks.Dispose();
|
|
|
GC.SuppressFinalize(this);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
public void Dispose() {
|
|
|
Dispose(true);
|
|
|
}
|
|
|
|
|
|
~DispatchPool() {
|
|
|
Dispose(false);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|