##// END OF EJS Templates
small refactoring, cleanup.
small refactoring, cleanup.

File last commit:

r30:2fad2d1f4b03 default
r30:2fad2d1f4b03 default
Show More
DispatchPool.cs
335 lines | 11.7 KiB | text/x-csharp | CSharpLexer
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Diagnostics;
namespace Implab.Parallels {
public abstract class DispatchPool<TUnit> : IDisposable {
readonly int m_minThreads;
readonly int m_maxThreads;
int m_createdThreads = 0; // the current size of the pool
int m_activeThreads = 0; // the count of threads which are active
int m_sleepingThreads = 0; // the count of currently inactive threads
int m_maxRunningThreads = 0; // the meximum reached size of the pool
int m_exitRequired = 0; // the pool is going to shutdown, all unused workers are released
int m_releaseTimeout = 100; // the timeout while the working thread will wait for the new tasks before exit
int m_wakeEvents = 0; // the count of wake events
AutoResetEvent m_hasTasks = new AutoResetEvent(false);
protected DispatchPool(int min, int max) {
if (min < 0)
throw new ArgumentOutOfRangeException("min");
if (max <= 0)
throw new ArgumentOutOfRangeException("max");
if (min > max)
min = max;
m_minThreads = min;
m_maxThreads = max;
}
protected DispatchPool(int threads)
: this(threads, threads) {
}
protected DispatchPool() {
int maxThreads, maxCP;
ThreadPool.GetMaxThreads(out maxThreads, out maxCP);
m_minThreads = 0;
m_maxThreads = maxThreads;
}
protected void InitPool() {
for (int i = 0; i < m_minThreads; i++)
StartWorker();
}
public int PoolSize {
get {
return m_createdThreads;
}
}
public int ActiveThreads {
get {
return m_activeThreads;
}
}
public int MaxRunningThreads {
get {
return m_maxRunningThreads;
}
}
protected bool IsDisposed {
get {
return m_exitRequired != 0;
}
}
protected abstract bool TryDequeue(out TUnit unit);
#region thread execution traits
int SignalThread() {
var signals = Interlocked.Increment(ref m_wakeEvents);
if(signals == 1)
m_hasTasks.Set();
return signals;
}
bool FetchSignalOrWait(int timeout) {
var start = Environment.TickCount;
// означает, что поток владеет блокировкой и при успешном получении сигнала должен
// ее вернуть, чтобы другой ожидающий поток смог
bool hasLock = false;
do {
int signals;
do {
signals = m_wakeEvents;
if (signals == 0)
break;
} while (Interlocked.CompareExchange(ref m_wakeEvents, signals - 1, signals) != signals);
if (signals >= 1) {
if (signals > 1 && hasLock)
m_hasTasks.Set();
return true;
}
if (timeout != -1)
timeout = Math.Max(0, timeout - (Environment.TickCount - start));
// если сигналов больше не осталось, то первый поток, который дошел сюда сбросит событие
// и уйдет на пустой цикл, после чего заблокируется
hasLock = true;
} while (m_hasTasks.WaitOne(timeout));
return false;
}
bool Sleep(int timeout) {
Interlocked.Increment(ref m_sleepingThreads);
if (FetchSignalOrWait(timeout)) {
Interlocked.Decrement(ref m_sleepingThreads);
return true;
} else {
Interlocked.Decrement(ref m_sleepingThreads);
return false;
}
}
#endregion
/// <summary>
/// Запускает либо новый поток, если раньше не было ни одного потока, либо устанавливает событие пробуждение одного спящего потока
/// </summary>
protected void GrowPool() {
if (m_exitRequired != 0)
return;
if (m_sleepingThreads > m_wakeEvents) {
//Console.WriteLine("Waking threads (sleeps {0}, pending {1})", m_sleepingThreads, m_wakeEvents);
// all sleeping threads may gone
SignalThread(); // wake a sleeping thread;
// we can't check whether signal has been processed
// anyway it may take some time for the thread to start
// we will ensure that at least one thread is running
EnsurePoolIsAlive();
} else {
// if there is no sleeping threads in the pool
if (!StartWorker()) {
// we haven't started a new thread, but the current can be on the way to terminate and it can't process the queue
// send it a signal to spin again
SignalThread();
EnsurePoolIsAlive();
}
}
}
private void EnsurePoolIsAlive() {
if (AllocateThreadSlot(1)) {
// if there were no threads in the pool
var worker = new Thread(this.Worker);
worker.IsBackground = true;
worker.Start();
}
}
private bool Suspend() {
//no tasks left, exit if the thread is no longer needed
bool last;
bool requestExit;
// if threads have a timeout before releasing
if (m_releaseTimeout > 0)
requestExit = !Sleep(m_releaseTimeout);
else
requestExit = true;
if (!requestExit)
return true;
// release unsused thread
if (requestExit && ReleaseThreadSlot(out last)) {
// in case at the moment the last thread was being released
// a new task was added to the queue, we need to try
// to revoke the thread to avoid the situation when the task is left unprocessed
if (last && FetchSignalOrWait(0)) { // FetchSignalOrWait(0) will fetch pending task or will return false
SignalThread(); // since FetchSignalOrWait(0) has fetched the signal we need to reschedule it
return AllocateThreadSlot(1); // ensure that at least one thread is alive
}
return false;
}
// wait till infinity
Sleep(-1);
return true;
}
#region thread slots traits
bool AllocateThreadSlot() {
int current;
// use spins to allocate slot for the new thread
do {
current = m_createdThreads;
if (current >= m_maxThreads || m_exitRequired != 0)
// no more slots left or the pool has been disposed
return false;
} while (current != Interlocked.CompareExchange(ref m_createdThreads, current + 1, current));
UpdateMaxThreads(current + 1);
return true;
}
bool AllocateThreadSlot(int desired) {
if (desired - 1 != Interlocked.CompareExchange(ref m_createdThreads, desired, desired - 1))
return false;
UpdateMaxThreads(desired);
return true;
}
bool ReleaseThreadSlot(out bool last) {
last = false;
int current;
// use spins to release slot for the new thread
do {
current = m_createdThreads;
if (current <= m_minThreads && m_exitRequired == 0)
// the thread is reserved
return false;
} while (current != Interlocked.CompareExchange(ref m_createdThreads, current - 1, current));
last = (current == 1);
return true;
}
/// <summary>
/// releases thread slot unconditionally, used during cleanup
/// </summary>
/// <returns>true - no more threads left</returns>
bool ReleaseThreadSlotAnyway() {
var left = Interlocked.Decrement(ref m_createdThreads);
return left == 0;
}
void UpdateMaxThreads(int count) {
int max;
do {
max = m_maxRunningThreads;
if (max >= count)
break;
} while(max != Interlocked.CompareExchange(ref m_maxRunningThreads, count, max));
}
#endregion
bool StartWorker() {
if (AllocateThreadSlot()) {
// slot successfully allocated
var worker = new Thread(this.Worker);
worker.IsBackground = true;
worker.Start();
return true;
} else {
return false;
}
}
protected abstract void InvokeUnit(TUnit unit);
void Worker() {
TUnit unit;
//Console.WriteLine("{0}: Active", Thread.CurrentThread.ManagedThreadId);
Interlocked.Increment(ref m_activeThreads);
do {
// exit if requested
if (m_exitRequired != 0) {
// release the thread slot
Interlocked.Decrement(ref m_activeThreads);
if (ReleaseThreadSlotAnyway()) // it was the last worker
m_hasTasks.Dispose();
else
SignalThread(); // wake next worker
break;
}
// fetch task
if (TryDequeue(out unit)) {
InvokeUnit(unit);
continue;
}
Interlocked.Decrement(ref m_activeThreads);
// entering suspend state
// keep this thread and wait
if (!Suspend())
break;
//Console.WriteLine("{0}: Awake", Thread.CurrentThread.ManagedThreadId);
Interlocked.Increment(ref m_activeThreads);
} while (true);
//Console.WriteLine("{0}: Exited", Thread.CurrentThread.ManagedThreadId);
}
protected virtual void Dispose(bool disposing) {
if (disposing) {
if (m_exitRequired == 0) {
if (Interlocked.CompareExchange(ref m_exitRequired, 1, 0) != 0)
return;
// wake sleeping threads
if (m_createdThreads > 0)
SignalThread();
else
m_hasTasks.Dispose();
GC.SuppressFinalize(this);
}
}
}
public void Dispose() {
Dispose(true);
}
~DispatchPool() {
Dispose(false);
}
}
}