##// END OF EJS Templates
fixed regression: race condition in Promise...
fixed regression: race condition in Promise DFA refactoring

File last commit:

r137:238e15580926 v2
r160:5802131432e4 v2
Show More
AsyncQueue.cs
631 lines | 20.6 KiB | text/x-csharp | CSharpLexer
using System.Threading;
using System.Collections.Generic;
using System;
using System.Collections;
using System.Diagnostics;
namespace Implab.Parallels {
public class AsyncQueue<T> : IEnumerable<T> {
class Chunk {
public Chunk next;
int m_low;
int m_hi;
int m_alloc;
readonly int m_size;
readonly T[] m_data;
public Chunk(int size) {
m_size = size;
m_data = new T[size];
}
public Chunk(int size, T value) {
m_size = size;
m_hi = 1;
m_alloc = 1;
m_data = new T[size];
m_data[0] = value;
}
public Chunk(int size, T[] data, int offset, int length, int alloc) {
m_size = size;
m_hi = length;
m_alloc = alloc;
m_data = new T[size];
Array.Copy(data, offset, m_data, 0, length);
}
public int Low {
get { return m_low; }
}
public int Hi {
get { return m_hi; }
}
public int Size {
get { return m_size; }
}
public bool TryEnqueue(T value, out bool extend) {
var alloc = Interlocked.Increment(ref m_alloc) - 1;
if (alloc >= m_size) {
extend = alloc == m_size;
return false;
}
extend = false;
m_data[alloc] = value;
while (alloc != Interlocked.CompareExchange(ref m_hi, alloc + 1, alloc)) {
// spin wait for commit
}
return true;
}
/// <summary>
/// Prevents from allocating new space in the chunk and waits for all write operations to complete
/// </summary>
public void Commit() {
var actual = Math.Min(Interlocked.Exchange(ref m_alloc, m_size + 1), m_size);
while (m_hi != actual)
Thread.MemoryBarrier();
}
public bool TryDequeue(out T value, out bool recycle) {
int low;
do {
low = m_low;
if (low >= m_hi) {
value = default(T);
recycle = (low == m_size);
return false;
}
} while(low != Interlocked.CompareExchange(ref m_low, low + 1, low));
recycle = (low == m_size - 1);
value = m_data[low];
return true;
}
public bool TryEnqueueBatch(T[] batch, int offset, int length, out int enqueued, out bool extend) {
//int alloc;
//int allocSize;
var alloc = Interlocked.Add(ref m_alloc, length) - length;
if (alloc > m_size) {
// the chunk is full and someone already
// creating the new one
enqueued = 0; // nothing was added
extend = false; // the caller shouldn't try to extend the queue
return false; // nothing was added
}
enqueued = Math.Min(m_size - alloc, length);
extend = length > enqueued;
if (enqueued == 0)
return false;
Array.Copy(batch, offset, m_data, alloc, enqueued);
while (alloc != Interlocked.CompareExchange(ref m_hi, alloc + enqueued, alloc)) {
// spin wait for commit
}
return true;
}
public bool TryDequeueBatch(T[] buffer, int offset, int length,out int dequeued, out bool recycle) {
int low, hi, batchSize;
do {
low = m_low;
hi = m_hi;
if (low >= hi) {
dequeued = 0;
recycle = (low == m_size); // recycling could be restarted and we need to signal again
return false;
}
batchSize = Math.Min(hi - low, length);
} while(low != Interlocked.CompareExchange(ref m_low, low + batchSize, low));
recycle = (low == m_size - batchSize);
dequeued = batchSize;
Array.Copy(m_data, low, buffer, offset, batchSize);
return true;
}
public T GetAt(int pos) {
return m_data[pos];
}
}
public const int DEFAULT_CHUNK_SIZE = 32;
public const int MAX_CHUNK_SIZE = 262144;
Chunk m_first;
Chunk m_last;
/// <summary>
/// Adds the specified value to the queue.
/// </summary>
/// <param name="value">Tha value which will be added to the queue.</param>
public virtual void Enqueue(T value) {
var last = m_last;
// spin wait to the new chunk
bool extend = true;
while (last == null || !last.TryEnqueue(value, out extend)) {
// try to extend queue
if (extend || last == null) {
var chunk = new Chunk(DEFAULT_CHUNK_SIZE, value);
if (EnqueueChunk(last, chunk))
break; // success! exit!
last = m_last;
} else {
while (last == m_last) {
Thread.MemoryBarrier();
}
last = m_last;
}
}
}
/// <summary>
/// Adds the specified data to the queue.
/// </summary>
/// <param name="data">The buffer which contains the data to be enqueued.</param>
/// <param name="offset">The offset of the data in the buffer.</param>
/// <param name="length">The size of the data to read from the buffer.</param>
public virtual void EnqueueRange(T[] data, int offset, int length) {
if (data == null)
throw new ArgumentNullException("data");
if (length == 0)
return;
if (offset < 0)
throw new ArgumentOutOfRangeException("offset");
if (length < 1 || offset + length > data.Length)
throw new ArgumentOutOfRangeException("length");
var last = m_last;
bool extend;
int enqueued;
while (length > 0) {
extend = true;
if (last != null && last.TryEnqueueBatch(data, offset, length, out enqueued, out extend)) {
length -= enqueued;
offset += enqueued;
}
if (extend) {
// there was no enough space in the chunk
// or there was no chunks in the queue
while (length > 0) {
var size = Math.Min(length, MAX_CHUNK_SIZE);
var chunk = new Chunk(
Math.Max(size, DEFAULT_CHUNK_SIZE),
data,
offset,
size,
length // length >= size
);
if (!EnqueueChunk(last, chunk)) {
// looks like the queue has been updated then proceed from the beginning
last = m_last;
break;
}
// we have successfully added the new chunk
last = chunk;
length -= size;
offset += size;
}
} else {
// we don't need to extend the queue, if we successfully enqueued data
if (length == 0)
break;
// if we need to wait while someone is extending the queue
// spinwait
while (last == m_last) {
Thread.MemoryBarrier();
}
last = m_last;
}
}
}
/// <summary>
/// Tries to retrieve the first element from the queue.
/// </summary>
/// <returns><c>true</c>, if element is dequeued, <c>false</c> otherwise.</returns>
/// <param name="value">The value of the dequeued element.</param>
public bool TryDequeue(out T value) {
var chunk = m_first;
bool recycle;
while (chunk != null) {
var result = chunk.TryDequeue(out value, out recycle);
if (recycle) // this chunk is waste
RecycleFirstChunk(chunk);
else
return result; // this chunk is usable and returned actual result
if (result) // this chunk is waste but the true result is always actual
return true;
// try again
chunk = m_first;
}
// the queue is empty
value = default(T);
return false;
}
/// <summary>
/// Tries to dequeue the specified amount of data from the queue.
/// </summary>
/// <returns><c>true</c>, if data was deuqueued, <c>false</c> otherwise.</returns>
/// <param name="buffer">The buffer to which the data will be written.</param>
/// <param name="offset">The offset in the buffer at which the data will be written.</param>
/// <param name="length">The maximum amount of data to be retrieved.</param>
/// <param name="dequeued">The actual amout of the retrieved data.</param>
public bool TryDequeueRange(T[] buffer, int offset, int length, out int dequeued) {
if (buffer == null)
throw new ArgumentNullException("buffer");
if (offset < 0)
throw new ArgumentOutOfRangeException("offset");
if (length < 1 || offset + length > buffer.Length)
throw new ArgumentOutOfRangeException("length");
var chunk = m_first;
bool recycle;
dequeued = 0;
while (chunk != null) {
int actual;
if (chunk.TryDequeueBatch(buffer, offset, length, out actual, out recycle)) {
offset += actual;
length -= actual;
dequeued += actual;
}
if (recycle) // this chunk is waste
RecycleFirstChunk(chunk);
else if (actual == 0)
break; // the chunk is usable, but doesn't contain any data (it's the last chunk in the queue)
if (length == 0)
return true;
// we still may dequeue something
// try again
chunk = m_first;
}
return dequeued != 0;
}
/// <summary>
/// Tries to dequeue all remaining data in the first chunk.
/// </summary>
/// <returns><c>true</c>, if data was dequeued, <c>false</c> otherwise.</returns>
/// <param name="buffer">The buffer to which the data will be written.</param>
/// <param name="offset">The offset in the buffer at which the data will be written.</param>
/// <param name="length">Tha maximum amount of the data to be dequeued.</param>
/// <param name="dequeued">The actual amount of the dequeued data.</param>
public bool TryDequeueChunk(T[] buffer, int offset, int length, out int dequeued) {
if (buffer == null)
throw new ArgumentNullException("buffer");
if (offset < 0)
throw new ArgumentOutOfRangeException("offset");
if (length < 1 || offset + length > buffer.Length)
throw new ArgumentOutOfRangeException("length");
var chunk = m_first;
bool recycle;
dequeued = 0;
while (chunk != null) {
int actual;
if (chunk.TryDequeueBatch(buffer, offset, length, out actual, out recycle)) {
dequeued = actual;
}
if (recycle) // this chunk is waste
RecycleFirstChunk(chunk);
// if we have dequeued any data, then return
if (dequeued != 0)
return true;
// we still may dequeue something
// try again
chunk = m_first;
}
return false;
}
bool EnqueueChunk(Chunk last, Chunk chunk) {
if (Interlocked.CompareExchange(ref m_last, chunk, last) != last)
return false;
if (last != null)
last.next = chunk;
else {
m_first = chunk;
}
return true;
}
void RecycleFirstChunk(Chunk first) {
var next = first.next;
if (first != Interlocked.CompareExchange(ref m_first, next, first))
return;
if (next == null) {
if (first != Interlocked.CompareExchange(ref m_last, null, first)) {
/*while (first.next == null)
Thread.MemoryBarrier();*/
// race
// someone already updated the tail, restore the pointer to the queue head
m_first = first;
}
// the tail is updated
}
// we need to update the head
//Interlocked.CompareExchange(ref m_first, next, first);
// if the head is already updated then give up
//return;
}
public void Clear() {
// start the new queue
var chunk = new Chunk(DEFAULT_CHUNK_SIZE);
do {
Thread.MemoryBarrier();
var first = m_first;
var last = m_last;
if (last == null) // nothing to clear
return;
if (first == null || (first.next == null && first != last)) // inconcistency
continue;
// here we will create inconsistency which will force others to spin
// and prevent from fetching. chunk.next = null
if (first != Interlocked.CompareExchange(ref m_first, chunk, first))
continue;// inconsistent
m_last = chunk;
return;
} while(true);
}
public T[] Drain() {
// start the new queue
var chunk = new Chunk(DEFAULT_CHUNK_SIZE);
do {
Thread.MemoryBarrier();
var first = m_first;
var last = m_last;
if (last == null)
return new T[0];
if (first == null || (first.next == null && first != last))
continue;
// here we will create inconsistency which will force others to spin
// and prevent from fetching. chunk.next = null
if (first != Interlocked.CompareExchange(ref m_first, chunk, first))
continue;// inconsistent
last = Interlocked.Exchange(ref m_last, chunk);
return ReadChunks(first, last);
} while(true);
}
static T[] ReadChunks(Chunk chunk, object last) {
var result = new List<T>();
var buffer = new T[DEFAULT_CHUNK_SIZE];
int actual;
bool recycle;
while (chunk != null) {
// ensure all write operations on the chunk are complete
chunk.Commit();
// we need to read the chunk using this way
// since some client still may completing the dequeue
// operation, such clients most likely won't get results
while (chunk.TryDequeueBatch(buffer, 0, buffer.Length, out actual, out recycle))
result.AddRange(new ArraySegmentCollection(buffer, 0, actual));
if (chunk == last) {
chunk = null;
} else {
while (chunk.next == null)
Thread.MemoryBarrier();
chunk = chunk.next;
}
}
return result.ToArray();
}
struct ArraySegmentCollection : ICollection<T> {
readonly T[] m_data;
readonly int m_offset;
readonly int m_length;
public ArraySegmentCollection(T[] data, int offset, int length) {
m_data = data;
m_offset = offset;
m_length = length;
}
#region ICollection implementation
public void Add(T item) {
throw new NotSupportedException();
}
public void Clear() {
throw new NotSupportedException();
}
public bool Contains(T item) {
return false;
}
public void CopyTo(T[] array, int arrayIndex) {
Array.Copy(m_data,m_offset,array,arrayIndex, m_length);
}
public bool Remove(T item) {
throw new NotSupportedException();
}
public int Count {
get {
return m_length;
}
}
public bool IsReadOnly {
get {
return true;
}
}
#endregion
#region IEnumerable implementation
public IEnumerator<T> GetEnumerator() {
for (int i = m_offset; i < m_length + m_offset; i++)
yield return m_data[i];
}
#endregion
#region IEnumerable implementation
IEnumerator IEnumerable.GetEnumerator() {
return GetEnumerator();
}
#endregion
}
#region IEnumerable implementation
class Enumerator : IEnumerator<T> {
Chunk m_current;
int m_pos = -1;
public Enumerator(Chunk fisrt) {
m_current = fisrt;
}
#region IEnumerator implementation
public bool MoveNext() {
if (m_current == null)
return false;
if (m_pos == -1)
m_pos = m_current.Low;
else
m_pos++;
if (m_pos == m_current.Hi) {
m_current = m_pos == m_current.Size ? m_current.next : null;
m_pos = 0;
if (m_current == null)
return false;
}
return true;
}
public void Reset() {
throw new NotSupportedException();
}
object IEnumerator.Current {
get {
return Current;
}
}
#endregion
#region IDisposable implementation
public void Dispose() {
}
#endregion
#region IEnumerator implementation
public T Current {
get {
if (m_pos == -1 || m_current == null)
throw new InvalidOperationException();
return m_current.GetAt(m_pos);
}
}
#endregion
}
public IEnumerator<T> GetEnumerator() {
return new Enumerator(m_first);
}
#endregion
#region IEnumerable implementation
IEnumerator IEnumerable.GetEnumerator() {
return GetEnumerator();
}
#endregion
}
}