|
|
using System;
|
|
|
using System.Threading;
|
|
|
|
|
|
namespace Implab.Parallels {
|
|
|
public abstract class DispatchPool<TUnit> : IDisposable {
|
|
|
readonly int m_minThreadsLimit;
|
|
|
readonly int m_maxThreadsLimit;
|
|
|
readonly int m_releaseTimeout = 1000; // the timeout while the working thread will wait for the new tasks before exit
|
|
|
|
|
|
int m_threads; // the current size of the pool
|
|
|
int m_maxRunningThreads; // the meximum reached size of the pool
|
|
|
int m_exit; // the pool is going to shutdown, all unused workers are released
|
|
|
|
|
|
readonly object m_signal = new object(); // used to pulse waiting threads
|
|
|
|
|
|
protected DispatchPool(int min, int max) {
|
|
|
if (min < 0)
|
|
|
throw new ArgumentOutOfRangeException("min");
|
|
|
if (max <= 0)
|
|
|
throw new ArgumentOutOfRangeException("max");
|
|
|
|
|
|
if (min > max)
|
|
|
min = max;
|
|
|
m_minThreadsLimit = min;
|
|
|
m_maxThreadsLimit = max;
|
|
|
}
|
|
|
|
|
|
protected DispatchPool(int threads)
|
|
|
: this(threads, threads) {
|
|
|
}
|
|
|
|
|
|
protected DispatchPool() {
|
|
|
int maxThreads, maxCP;
|
|
|
ThreadPool.GetMaxThreads(out maxThreads, out maxCP);
|
|
|
|
|
|
m_minThreadsLimit = 0;
|
|
|
m_maxThreadsLimit = maxThreads;
|
|
|
}
|
|
|
|
|
|
protected void InitPool() {
|
|
|
for (int i = 0; i < m_minThreadsLimit; i++)
|
|
|
StartWorker();
|
|
|
}
|
|
|
|
|
|
public int PoolSize {
|
|
|
get {
|
|
|
Thread.MemoryBarrier();
|
|
|
return m_threads;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
public int MaxRunningThreads {
|
|
|
get {
|
|
|
Thread.MemoryBarrier();
|
|
|
return m_maxRunningThreads;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
protected bool IsDisposed {
|
|
|
get {
|
|
|
Thread.MemoryBarrier();
|
|
|
return m_exit == 1;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
protected abstract bool TryDequeue(out TUnit unit);
|
|
|
|
|
|
bool Dequeue(out TUnit unit, int timeout) {
|
|
|
int ts = Environment.TickCount;
|
|
|
if (TryDequeue(out unit))
|
|
|
return true;
|
|
|
lock (m_signal) {
|
|
|
while (!TryDequeue(out unit) && m_exit == 0)
|
|
|
if(!Monitor.Wait(m_signal, Math.Max(0, ts + timeout - Environment.TickCount))) {
|
|
|
// timeout
|
|
|
return false;
|
|
|
}
|
|
|
// queue item or terminate
|
|
|
Monitor.Pulse(m_signal);
|
|
|
if (m_exit == 1)
|
|
|
return false;
|
|
|
}
|
|
|
return true;
|
|
|
}
|
|
|
|
|
|
protected void SignalThread() {
|
|
|
lock (m_signal) {
|
|
|
Monitor.Pulse(m_signal);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
#region thread slots traits
|
|
|
|
|
|
bool AllocateThreadSlot() {
|
|
|
int current;
|
|
|
// use spins to allocate slot for the new thread
|
|
|
do {
|
|
|
current = m_threads;
|
|
|
if (current >= m_maxThreadsLimit || m_exit == 1)
|
|
|
// no more slots left or the pool has been disposed
|
|
|
return false;
|
|
|
} while (current != Interlocked.CompareExchange(ref m_threads, current + 1, current));
|
|
|
|
|
|
UpdateMaxThreads(current + 1);
|
|
|
|
|
|
return true;
|
|
|
}
|
|
|
|
|
|
bool AllocateThreadSlot(int desired) {
|
|
|
if (desired - 1 != Interlocked.CompareExchange(ref m_threads, desired, desired - 1))
|
|
|
return false;
|
|
|
|
|
|
UpdateMaxThreads(desired);
|
|
|
|
|
|
return true;
|
|
|
}
|
|
|
|
|
|
bool ReleaseThreadSlot(out bool last) {
|
|
|
last = false;
|
|
|
int current;
|
|
|
// use spins to release slot for the new thread
|
|
|
Thread.MemoryBarrier();
|
|
|
do {
|
|
|
current = m_threads;
|
|
|
if (current <= m_minThreadsLimit && m_exit == 0)
|
|
|
// the thread is reserved
|
|
|
return false;
|
|
|
} while (current != Interlocked.CompareExchange(ref m_threads, current - 1, current));
|
|
|
|
|
|
last = (current == 1);
|
|
|
|
|
|
return true;
|
|
|
}
|
|
|
|
|
|
void UpdateMaxThreads(int count) {
|
|
|
int max;
|
|
|
do {
|
|
|
max = m_maxRunningThreads;
|
|
|
if (max >= count)
|
|
|
break;
|
|
|
} while(max != Interlocked.CompareExchange(ref m_maxRunningThreads, count, max));
|
|
|
}
|
|
|
|
|
|
#endregion
|
|
|
|
|
|
protected bool StartWorker() {
|
|
|
if (AllocateThreadSlot()) {
|
|
|
// slot successfully allocated
|
|
|
var worker = new Thread(Worker);
|
|
|
worker.IsBackground = true;
|
|
|
worker.Start();
|
|
|
|
|
|
return true;
|
|
|
}
|
|
|
return false;
|
|
|
}
|
|
|
|
|
|
protected abstract void InvokeUnit(TUnit unit);
|
|
|
|
|
|
protected virtual void Worker() {
|
|
|
TUnit unit;
|
|
|
bool last;
|
|
|
do {
|
|
|
while (Dequeue(out unit, m_releaseTimeout)) {
|
|
|
InvokeUnit(unit);
|
|
|
}
|
|
|
if(!ReleaseThreadSlot(out last))
|
|
|
continue;
|
|
|
// queue may be not empty
|
|
|
if (last && TryDequeue(out unit)) {
|
|
|
InvokeUnit(unit);
|
|
|
if (AllocateThreadSlot(1))
|
|
|
continue;
|
|
|
// we can safely exit since pool is alive
|
|
|
}
|
|
|
break;
|
|
|
} while(true);
|
|
|
}
|
|
|
|
|
|
|
|
|
protected virtual void Dispose(bool disposing) {
|
|
|
if (disposing) {
|
|
|
if (0 == Interlocked.CompareExchange(ref m_exit, 1, 0)) { // implies memory barrier
|
|
|
// wake sleeping threads
|
|
|
SignalThread();
|
|
|
GC.SuppressFinalize(this);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
public void Dispose() {
|
|
|
Dispose(true);
|
|
|
}
|
|
|
|
|
|
~DispatchPool() {
|
|
|
Dispose(false);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|