##// END OF EJS Templates
DispatchPool works again, but performance is poor in some cases
cin -
r21:6a56df4ec59e promises
parent child
Show More
@@ -1,333 +1,333
1 1 using System;
2 2 using Microsoft.VisualStudio.TestTools.UnitTesting;
3 3 using System.Reflection;
4 4 using System.Threading;
5 5 using Implab.Parallels;
6 6
7 7 namespace Implab.Test {
8 8 [TestClass]
9 9 public class AsyncTests {
10 10 [TestMethod]
11 11 public void ResolveTest() {
12 12 int res = -1;
13 13 var p = new Promise<int>();
14 14 p.Then(x => res = x);
15 15 p.Resolve(100);
16 16
17 17 Assert.AreEqual(100, res);
18 18 }
19 19
20 20 [TestMethod]
21 21 public void RejectTest() {
22 22 int res = -1;
23 23 Exception err = null;
24 24
25 25 var p = new Promise<int>();
26 26 p.Then(x => res = x, e => err = e);
27 27 p.Reject(new ApplicationException("error"));
28 28
29 29 Assert.AreEqual(res, -1);
30 30 Assert.AreEqual(err.Message, "error");
31 31
32 32 }
33 33
34 34 [TestMethod]
35 35 public void JoinSuccessTest() {
36 36 var p = new Promise<int>();
37 37 p.Resolve(100);
38 38 Assert.AreEqual(p.Join(), 100);
39 39 }
40 40
41 41 [TestMethod]
42 42 public void JoinFailTest() {
43 43 var p = new Promise<int>();
44 44 p.Reject(new ApplicationException("failed"));
45 45
46 46 try {
47 47 p.Join();
48 48 throw new ApplicationException("WRONG!");
49 49 } catch (TargetInvocationException err) {
50 50 Assert.AreEqual(err.InnerException.Message, "failed");
51 51 } catch {
52 52 Assert.Fail("Got wrong excaption");
53 53 }
54 54 }
55 55
56 56 [TestMethod]
57 57 public void MapTest() {
58 58 var p = new Promise<int>();
59 59
60 60 var p2 = p.Map(x => x.ToString());
61 61 p.Resolve(100);
62 62
63 63 Assert.AreEqual(p2.Join(), "100");
64 64 }
65 65
66 66 [TestMethod]
67 67 public void FixErrorTest() {
68 68 var p = new Promise<int>();
69 69
70 70 var p2 = p.Error(e => 101);
71 71
72 72 p.Reject(new Exception());
73 73
74 74 Assert.AreEqual(p2.Join(), 101);
75 75 }
76 76
77 77 [TestMethod]
78 78 public void ChainTest() {
79 79 var p1 = new Promise<int>();
80 80
81 81 var p3 = p1.Chain(x => {
82 82 var p2 = new Promise<string>();
83 83 p2.Resolve(x.ToString());
84 84 return p2;
85 85 });
86 86
87 87 p1.Resolve(100);
88 88
89 89 Assert.AreEqual(p3.Join(), "100");
90 90 }
91 91
92 92 [TestMethod]
93 93 public void PoolTest() {
94 94 var pid = Thread.CurrentThread.ManagedThreadId;
95 95 var p = AsyncPool.Invoke(() => Thread.CurrentThread.ManagedThreadId);
96 96
97 97 Assert.AreNotEqual(pid, p.Join());
98 98 }
99 99
100 100 [TestMethod]
101 101 public void WorkerPoolSizeTest() {
102 102 var pool = new WorkerPool(5, 10, 0);
103 103
104 104 Assert.AreEqual(5, pool.PoolSize);
105 105
106 106 pool.Invoke(() => { Thread.Sleep(1000000); return 10; });
107 107 pool.Invoke(() => { Thread.Sleep(1000000); return 10; });
108 108 pool.Invoke(() => { Thread.Sleep(1000000); return 10; });
109 109
110 110 Assert.AreEqual(5, pool.PoolSize);
111 111
112 112 for (int i = 0; i < 100; i++)
113 113 pool.Invoke(() => { Thread.Sleep(1000000); return 10; });
114 114 Thread.Sleep(100);
115 115 Assert.AreEqual(10, pool.PoolSize);
116 116
117 117 pool.Dispose();
118 118 }
119 119
120 120 [TestMethod]
121 121 public void WorkerPoolCorrectTest() {
122 122 var pool = new WorkerPool(0,1000,100);
123 123
124 124 int iterations = 1000;
125 125 int pending = iterations;
126 126 var stop = new ManualResetEvent(false);
127 127
128 128 var count = 0;
129 129 for (int i = 0; i < iterations; i++) {
130 130 pool
131 131 .Invoke(() => 1)
132 132 .Then(x => Interlocked.Add(ref count, x))
133 133 .Then(x => Math.Log10(x))
134 134 .Anyway(() => {
135 135 Interlocked.Decrement(ref pending);
136 136 if (pending == 0)
137 137 stop.Set();
138 138 });
139 139 }
140 140
141 141 stop.WaitOne();
142 142
143 143 Assert.AreEqual(iterations, count);
144 144 Console.WriteLine("Max threads: {0}", pool.MaxRunningThreads);
145 145 pool.Dispose();
146 146
147 147 }
148 148
149 149 [TestMethod]
150 150 public void WorkerPoolDisposeTest() {
151 151 var pool = new WorkerPool(5, 20);
152 152 Assert.AreEqual(5, pool.PoolSize);
153 153 pool.Dispose();
154 Thread.Sleep(200);
154 Thread.Sleep(500);
155 155 Assert.AreEqual(0, pool.PoolSize);
156 156 pool.Dispose();
157 157 }
158 158
159 159 [TestMethod]
160 160 public void MTQueueTest() {
161 161 var queue = new MTQueue<int>();
162 162 int res;
163 163
164 164 queue.Enqueue(10);
165 165 Assert.IsTrue(queue.TryDequeue(out res));
166 166 Assert.AreEqual(10, res);
167 167 Assert.IsFalse(queue.TryDequeue(out res));
168 168
169 169 for (int i = 0; i < 1000; i++)
170 170 queue.Enqueue(i);
171 171
172 172 for (int i = 0; i < 1000; i++) {
173 173 queue.TryDequeue(out res);
174 174 Assert.AreEqual(i, res);
175 175 }
176 176
177 177 int writers = 0;
178 178 int readers = 0;
179 179 var stop = new ManualResetEvent(false);
180 180 int total = 0;
181 181
182 182 int itemsPerWriter = 1000;
183 183 int writersCount = 3;
184 184
185 185 for (int i = 0; i < writersCount; i++) {
186 186 Interlocked.Increment(ref writers);
187 187 var wn = i;
188 188 AsyncPool
189 189 .InvokeNewThread(() => {
190 190 for (int ii = 0; ii < itemsPerWriter; ii++) {
191 191 queue.Enqueue(1);
192 192 }
193 193 return 1;
194 194 })
195 195 .Anyway(() => Interlocked.Decrement(ref writers));
196 196 }
197 197
198 198 for (int i = 0; i < 10; i++) {
199 199 Interlocked.Increment(ref readers);
200 200 var wn = i;
201 201 AsyncPool
202 202 .InvokeNewThread(() => {
203 203 int t;
204 204 do {
205 205 while (queue.TryDequeue(out t))
206 206 Interlocked.Add(ref total, t);
207 207 } while (writers > 0);
208 208 return 1;
209 209 })
210 210 .Anyway(() => {
211 211 Interlocked.Decrement(ref readers);
212 212 if (readers == 0)
213 213 stop.Set();
214 214 });
215 215 }
216 216
217 217 stop.WaitOne();
218 218
219 219 Assert.AreEqual(itemsPerWriter * writersCount, total);
220 220 }
221 221
222 222 [TestMethod]
223 223 public void ParallelMapTest() {
224 224
225 225 int count = 100000;
226 226
227 227 double[] args = new double[count];
228 228 var rand = new Random();
229 229
230 230 for (int i = 0; i < count; i++)
231 231 args[i] = rand.NextDouble();
232 232
233 233 var t = Environment.TickCount;
234 234 var res = args.ParallelMap(x => Math.Sin(x*x), 4).Join();
235 235
236 236 Console.WriteLine("Map complete in {0} ms", Environment.TickCount - t);
237 237
238 238 t = Environment.TickCount;
239 239 for (int i = 0; i < count; i++)
240 240 Assert.AreEqual(Math.Sin(args[i] * args[i]), res[i]);
241 241 Console.WriteLine("Verified in {0} ms", Environment.TickCount - t);
242 242 }
243 243
244 244 [TestMethod]
245 245 public void ChainedMapTest() {
246 246
247 using (var pool = new WorkerPool(0,100,0)) {
247 using (var pool = new WorkerPool(0,100,1)) {
248 248 int count = 10000;
249 249
250 250 double[] args = new double[count];
251 251 var rand = new Random();
252 252
253 253 for (int i = 0; i < count; i++)
254 254 args[i] = rand.NextDouble();
255 255
256 256 var t = Environment.TickCount;
257 257 var res = args
258 258 .ChainedMap(
259 259 x => pool.Invoke(
260 260 () => Math.Sin(x * x)
261 261 ),
262 262 4
263 263 )
264 264 .Join();
265 265
266 266 Console.WriteLine("Map complete in {0} ms", Environment.TickCount - t);
267 267
268 268 t = Environment.TickCount;
269 269 for (int i = 0; i < count; i++)
270 270 Assert.AreEqual(Math.Sin(args[i] * args[i]), res[i]);
271 271 Console.WriteLine("Verified in {0} ms", Environment.TickCount - t);
272 272 Console.WriteLine("Max workers: {0}", pool.MaxRunningThreads);
273 273 }
274 274 }
275 275
276 276 [TestMethod]
277 277 public void ParallelForEachTest() {
278 278
279 279 int count = 100000;
280 280
281 281 int[] args = new int[count];
282 282 var rand = new Random();
283 283
284 284 for (int i = 0; i < count; i++)
285 285 args[i] = (int)(rand.NextDouble() * 100);
286 286
287 287 int result = 0;
288 288
289 289 var t = Environment.TickCount;
290 290 args.ParallelForEach(x => Interlocked.Add(ref result, x), 4).Join();
291 291
292 292 Console.WriteLine("Iteration complete in {0} ms, result: {1}", Environment.TickCount - t, result);
293 293
294 294 int result2 = 0;
295 295
296 296 t = Environment.TickCount;
297 297 for (int i = 0; i < count; i++)
298 298 result2 += args[i];
299 299 Assert.AreEqual(result2, result);
300 300 Console.WriteLine("Verified in {0} ms", Environment.TickCount - t);
301 301 }
302 302
303 303 [TestMethod]
304 304 public void ComplexCase1Test() {
305 305 var flags = new bool[3];
306 306
307 307 // op1 (aync 200ms) => op2 (async 200ms) => op3 (sync map)
308 308
309 309 var p = PromiseHelper
310 310 .Sleep(200, "Alan")
311 311 .Cancelled(() => flags[0] = true)
312 312 .Chain(x =>
313 313 PromiseHelper
314 314 .Sleep(200, "Hi, " + x)
315 315 .Map(y => y)
316 316 .Cancelled(() => flags[1] = true)
317 317 )
318 318 .Cancelled(() => flags[2] = true);
319 319 Thread.Sleep(300);
320 320 p.Cancel();
321 321 try {
322 322 Assert.AreEqual(p.Join(), "Hi, Alan");
323 323 Assert.Fail("Shouldn't get here");
324 324 } catch (OperationCanceledException) {
325 325 }
326 326
327 327 Assert.IsFalse(flags[0]);
328 328 Assert.IsTrue(flags[1]);
329 329 Assert.IsTrue(flags[2]);
330 330 }
331 331 }
332 332 }
333 333
1 NO CONTENT: modified file, binary diff hidden
@@ -1,279 +1,302
1 1 using System;
2 2 using System.Collections.Generic;
3 3 using System.Linq;
4 4 using System.Text;
5 5 using System.Threading;
6 6 using System.Diagnostics;
7 7
8 8 namespace Implab.Parallels {
9 9 public abstract class DispatchPool<TUnit> : IDisposable {
10 10 readonly int m_minThreads;
11 11 readonly int m_maxThreads;
12 int m_createdThreads = 0;
13 int m_activeThreads = 0;
14 int m_sleepingThreads = 0;
15 int m_maxRunningThreads = 0;
16 int m_exitRequired = 0;
17 int m_releaseTimeout = 100; // timeout while the working thread will wait for the new tasks before exit
12
13 int m_createdThreads = 0; // the current size of the pool
14 int m_activeThreads = 0; // the count of threads which are active
15 int m_sleepingThreads = 0; // the count of currently inactive threads
16 int m_maxRunningThreads = 0; // the meximum reached size of the pool
17 int m_exitRequired = 0; // the pool is going to shutdown, all unused workers are released
18 int m_releaseTimeout = 100; // the timeout while the working thread will wait for the new tasks before exit
19 int m_wakeEvents = 0; // the count of wake events
20
18 21 AutoResetEvent m_hasTasks = new AutoResetEvent(false);
19 22
20 23 protected DispatchPool(int min, int max) {
21 24 if (min < 0)
22 25 throw new ArgumentOutOfRangeException("min");
23 26 if (max <= 0)
24 27 throw new ArgumentOutOfRangeException("max");
25 28
26 29 if (min > max)
27 30 min = max;
28 31 m_minThreads = min;
29 32 m_maxThreads = max;
30 33 }
31 34
32 35 protected DispatchPool(int threads)
33 36 : this(threads, threads) {
34 37 }
35 38
36 39 protected DispatchPool() {
37 40 int maxThreads, maxCP;
38 41 ThreadPool.GetMaxThreads(out maxThreads, out maxCP);
39 42
40 43 m_minThreads = 0;
41 44 m_maxThreads = maxThreads;
42 45 }
43 46
44 47 protected void InitPool() {
45 48 for (int i = 0; i < m_minThreads; i++)
46 49 StartWorker();
47 50 }
48 51
49 52 public int PoolSize {
50 53 get {
51 54 return m_createdThreads;
52 55 }
53 56 }
54 57
55 58 public int ActiveThreads {
56 59 get {
57 60 return m_activeThreads;
58 61 }
59 62 }
60 63
61 64 public int MaxRunningThreads {
62 65 get {
63 66 return m_maxRunningThreads;
64 67 }
65 68 }
66 69
67 70 protected bool IsDisposed {
68 71 get {
69 72 return m_exitRequired != 0;
70 73 }
71 74 }
72 75
73 76 protected abstract bool TryDequeue(out TUnit unit);
74 77
75 protected virtual bool ExtendPool() {
76 if (m_sleepingThreads == 0)
77 // no sleeping workers are available
78 // try create one
79 return StartWorker();
80 else {
81 // we can get here a race condition when several threads asks to extend pool
82 // and some sleaping threads are exited due timeout but they are still counted as sleeping
83 // in that case all of this threads could exit except one
84 WakePool();
78 #region thread execution traits
79 int SignalThread() {
80 var signals = Interlocked.Increment(ref m_wakeEvents);
81 if(signals == 1)
82 m_hasTasks.Set();
83 return signals;
84 }
85
86 bool Sleep(int timeout) {
87 Interlocked.Increment(ref m_sleepingThreads);
88 if (m_hasTasks.WaitOne(timeout)) {
89 // this is autoreset event, only one thread can run this block simultaneously
90 var sleeping = Interlocked.Decrement(ref m_sleepingThreads);
91 if (Interlocked.Decrement(ref m_wakeEvents) > 0)
92 m_hasTasks.Set(); // wake next worker
93
85 94 return true;
95 } else {
96 Interlocked.Decrement(ref m_sleepingThreads);
97 return false;
86 98 }
87
88 99 }
100 #endregion
89 101
90 102 /// <summary>
91 103 /// ЗапускаСт Π»ΠΈΠ±ΠΎ Π½ΠΎΠ²Ρ‹ΠΉ ΠΏΠΎΡ‚ΠΎΠΊ, Ссли Ρ€Π°Π½ΡŒΡˆΠ΅ Π½Π΅ Π±Ρ‹Π»ΠΎ Π½ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ°, Π»ΠΈΠ±ΠΎ устанавливаСт событиС ΠΏΡ€ΠΎΠ±ΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ спящСго ΠΏΠΎΡ‚ΠΎΠΊΠ°
92 104 /// </summary>
93 protected void WakePool() {
94 m_hasTasks.Set(); // wake sleeping thread;
105 protected void GrowPool() {
106 if (m_exitRequired != 0)
107 return;
108 if (m_sleepingThreads > m_wakeEvents) {
109 // all sleeping threads may gone
110 SignalThread(); // wake a sleeping thread;
95 111
96 if (AllocateThreadSlot(1)) {
97 // if there were no threads in the pool
98 var worker = new Thread(this.Worker);
99 worker.IsBackground = true;
100 worker.Start();
112 // we can't check whether signal has been processed
113 // anyway it may take some time for the thread to start
114 // we will ensure that at least one thread is running
115
116 if (AllocateThreadSlot(1)) {
117 // if there were no threads in the pool
118 var worker = new Thread(this.Worker);
119 worker.IsBackground = true;
120 worker.Start();
121 }
122 } else {
123 // if there is no sleeping threads in the pool
124 StartWorker();
101 125 }
102 126 }
103 127
104 bool Sleep(int timeout) {
105 Interlocked.Increment(ref m_sleepingThreads);
106 var result = m_hasTasks.WaitOne(timeout);
107 Interlocked.Decrement(ref m_sleepingThreads);
108 return result;
109 }
110
111 protected virtual bool Suspend() {
128 private bool Suspend() {
112 129 //no tasks left, exit if the thread is no longer needed
113 130 bool last;
114 131 bool requestExit;
115 132
133
134
135 // if threads have a timeout before releasing
116 136 if (m_releaseTimeout > 0)
117 137 requestExit = !Sleep(m_releaseTimeout);
118 138 else
119 139 requestExit = true;
120
121 140
141 if (!requestExit)
142 return true;
143
144 // release unsused thread
122 145 if (requestExit && ReleaseThreadSlot(out last)) {
123 146 // in case at the moment the last thread was being released
124 147 // a new task was added to the queue, we need to try
125 148 // to revoke the thread to avoid the situation when the task is left unprocessed
126 if (last && m_hasTasks.WaitOne(0)) {
149 if (last && Sleep(0)) { // Sleep(0) will fetch pending task or will return false
127 150 if (AllocateThreadSlot(1))
128 151 return true; // spin again...
129 152 else
130 // we failed to reallocate the first slot for this thread
131 // therefore we need to release the event
132 m_hasTasks.Set();
153 SignalThread(); // since Sleep(0) has fetched the signal we neet to reschedule it
154
133 155 }
134 156
135 157 return false;
136 158 }
137 159
160 // wait till infinity
138 161 Sleep(-1);
139 162
140 163 return true;
141 164 }
142 165
143 166 #region thread slots traits
144 167
145 168 bool AllocateThreadSlot() {
146 169 int current;
147 170 // use spins to allocate slot for the new thread
148 171 do {
149 172 current = m_createdThreads;
150 173 if (current >= m_maxThreads || m_exitRequired != 0)
151 174 // no more slots left or the pool has been disposed
152 175 return false;
153 176 } while (current != Interlocked.CompareExchange(ref m_createdThreads, current + 1, current));
154 177
155 178 UpdateMaxThreads(current + 1);
156 179
157 180 return true;
158 181 }
159 182
160 183 bool AllocateThreadSlot(int desired) {
161 184 if (desired - 1 != Interlocked.CompareExchange(ref m_createdThreads, desired, desired - 1))
162 185 return false;
163 186
164 187 UpdateMaxThreads(desired);
165 188
166 189 return true;
167 190 }
168 191
169 192 bool ReleaseThreadSlot(out bool last) {
170 193 last = false;
171 194 int current;
172 195 // use spins to release slot for the new thread
173 196 do {
174 197 current = m_createdThreads;
175 198 if (current <= m_minThreads && m_exitRequired == 0)
176 199 // the thread is reserved
177 200 return false;
178 201 } while (current != Interlocked.CompareExchange(ref m_createdThreads, current - 1, current));
179 202
180 203 last = (current == 1);
181 204
182 205 return true;
183 206 }
184 207
185 208 /// <summary>
186 209 /// releases thread slot unconditionally, used during cleanup
187 210 /// </summary>
188 211 /// <returns>true - no more threads left</returns>
189 212 bool ReleaseThreadSlotAnyway() {
190 213 var left = Interlocked.Decrement(ref m_createdThreads);
191 214 return left == 0;
192 215 }
193 216
194 217 void UpdateMaxThreads(int count) {
195 218 int max;
196 219 do {
197 220 max = m_maxRunningThreads;
198 221 if (max >= count)
199 222 break;
200 223 } while(max != Interlocked.CompareExchange(ref m_maxRunningThreads, count, max));
201 224 }
202 225
203 226 #endregion
204 227
205 228 bool StartWorker() {
206 229 if (AllocateThreadSlot()) {
207 230 // slot successfully allocated
208 231 var worker = new Thread(this.Worker);
209 232 worker.IsBackground = true;
210 233 worker.Start();
211 234
212 235 return true;
213 236 } else {
214 237 return false;
215 238 }
216 239 }
217 240
218 bool FetchTask(out TUnit unit) {
241 protected abstract void InvokeUnit(TUnit unit);
242
243 void Worker() {
244 TUnit unit;
245 Interlocked.Increment(ref m_activeThreads);
246 Sleep(0); // remove wake request if the new thread is started
219 247 do {
220 248 // exit if requested
221 249 if (m_exitRequired != 0) {
222 250 // release the thread slot
223 251 Interlocked.Decrement(ref m_activeThreads);
224 252 if (ReleaseThreadSlotAnyway()) // it was the last worker
225 253 m_hasTasks.Dispose();
226 254 else
227 m_hasTasks.Set(); // wake next worker
255 SignalThread(); // wake next worker
228 256 unit = default(TUnit);
229 return false;
257 break;
230 258 }
231 259
232 260 // fetch task
233 261 if (TryDequeue(out unit)) {
234 ExtendPool();
235 return true;
262 InvokeUnit(unit);
263 continue;
236 264 }
237 265
238 266 Interlocked.Decrement(ref m_activeThreads);
239 267
240 268 // entering suspend state
241 269 // keep this thread and wait
242 270 if (!Suspend())
243 return false;
271 break;
244 272
245 273 Interlocked.Increment(ref m_activeThreads);
246 274 } while (true);
247 }
248
249 protected abstract void InvokeUnit(TUnit unit);
250
251 void Worker() {
252 TUnit unit;
253 Interlocked.Increment(ref m_activeThreads);
254 while (FetchTask(out unit))
255 InvokeUnit(unit);
275
256 276 }
257 277
258 278 protected virtual void Dispose(bool disposing) {
259 279 if (disposing) {
260 280 if (m_exitRequired == 0) {
261 281 if (Interlocked.CompareExchange(ref m_exitRequired, 1, 0) != 0)
262 282 return;
263 283
264 284 // wake sleeping threads
265 m_hasTasks.Set();
285 if (m_createdThreads > 0)
286 SignalThread();
287 else
288 m_hasTasks.Dispose();
266 289 GC.SuppressFinalize(this);
267 290 }
268 291 }
269 292 }
270 293
271 294 public void Dispose() {
272 295 Dispose(true);
273 296 }
274 297
275 298 ~DispatchPool() {
276 299 Dispose(false);
277 300 }
278 301 }
279 302 }
@@ -1,90 +1,77
1 1 using System;
2 2 using System.Collections.Generic;
3 3 using System.Linq;
4 4 using System.Text;
5 5 using System.Threading;
6 6 using System.Diagnostics;
7 7
8 8 namespace Implab.Parallels {
9 9 public class WorkerPool : DispatchPool<Action> {
10 10
11 11 MTQueue<Action> m_queue = new MTQueue<Action>();
12 12 int m_queueLength = 0;
13 13 readonly int m_threshold = 1;
14 14
15 15 public WorkerPool(int minThreads, int maxThreads, int threshold)
16 16 : base(minThreads, maxThreads) {
17 17 m_threshold = threshold;
18 18 InitPool();
19 19 }
20 20
21 21 public WorkerPool(int minThreads, int maxThreads) :
22 22 base(minThreads, maxThreads) {
23 23 InitPool();
24 24 }
25 25
26 26 public WorkerPool(int threads)
27 27 : base(threads) {
28 28 InitPool();
29 29 }
30 30
31 31 public WorkerPool()
32 32 : base() {
33 33 InitPool();
34 34 }
35 35
36 36 public Promise<T> Invoke<T>(Func<T> task) {
37 37 if (task == null)
38 38 throw new ArgumentNullException("task");
39 39 if (IsDisposed)
40 40 throw new ObjectDisposedException(ToString());
41 41
42 42 var promise = new Promise<T>();
43 43
44 44 EnqueueTask(delegate() {
45 45 try {
46 46 promise.Resolve(task());
47 47 } catch (Exception e) {
48 48 promise.Reject(e);
49 49 }
50 50 });
51 51
52 52 return promise;
53 53 }
54 54
55 55 protected void EnqueueTask(Action unit) {
56 56 Debug.Assert(unit != null);
57 57 var len = Interlocked.Increment(ref m_queueLength);
58 58 m_queue.Enqueue(unit);
59 59
60 ExtendPool();
61 }
62
63 protected override bool ExtendPool() {
64 if (m_queueLength <= m_threshold*ActiveThreads)
65 // in this case we are in active thread and it request for additional workers
66 // satisfy it only when queue is longer than threshold
67 return false;
68 return base.ExtendPool();
60 if (len > m_threshold*ActiveThreads)
61 GrowPool();
69 62 }
70 63
71 64 protected override bool TryDequeue(out Action unit) {
72 65 if (m_queue.TryDequeue(out unit)) {
73 66 Interlocked.Decrement(ref m_queueLength);
74 67 return true;
75 68 }
76 69 return false;
77 70 }
78 71
79 72 protected override void InvokeUnit(Action unit) {
80 73 unit();
81 74 }
82 75
83 protected override bool Suspend() {
84 if (m_queueLength == 0)
85 return base.Suspend();
86 else
87 return true; // spin again without locks...
88 }
89 76 }
90 77 }
General Comments 0
You need to be logged in to leave comments. Login now