@@ -1,333 +1,333 | |||
|
1 | 1 | using System; |
|
2 | 2 | using Microsoft.VisualStudio.TestTools.UnitTesting; |
|
3 | 3 | using System.Reflection; |
|
4 | 4 | using System.Threading; |
|
5 | 5 | using Implab.Parallels; |
|
6 | 6 | |
|
7 | 7 | namespace Implab.Test { |
|
8 | 8 | [TestClass] |
|
9 | 9 | public class AsyncTests { |
|
10 | 10 | [TestMethod] |
|
11 | 11 | public void ResolveTest() { |
|
12 | 12 | int res = -1; |
|
13 | 13 | var p = new Promise<int>(); |
|
14 | 14 | p.Then(x => res = x); |
|
15 | 15 | p.Resolve(100); |
|
16 | 16 | |
|
17 | 17 | Assert.AreEqual(100, res); |
|
18 | 18 | } |
|
19 | 19 | |
|
20 | 20 | [TestMethod] |
|
21 | 21 | public void RejectTest() { |
|
22 | 22 | int res = -1; |
|
23 | 23 | Exception err = null; |
|
24 | 24 | |
|
25 | 25 | var p = new Promise<int>(); |
|
26 | 26 | p.Then(x => res = x, e => err = e); |
|
27 | 27 | p.Reject(new ApplicationException("error")); |
|
28 | 28 | |
|
29 | 29 | Assert.AreEqual(res, -1); |
|
30 | 30 | Assert.AreEqual(err.Message, "error"); |
|
31 | 31 | |
|
32 | 32 | } |
|
33 | 33 | |
|
34 | 34 | [TestMethod] |
|
35 | 35 | public void JoinSuccessTest() { |
|
36 | 36 | var p = new Promise<int>(); |
|
37 | 37 | p.Resolve(100); |
|
38 | 38 | Assert.AreEqual(p.Join(), 100); |
|
39 | 39 | } |
|
40 | 40 | |
|
41 | 41 | [TestMethod] |
|
42 | 42 | public void JoinFailTest() { |
|
43 | 43 | var p = new Promise<int>(); |
|
44 | 44 | p.Reject(new ApplicationException("failed")); |
|
45 | 45 | |
|
46 | 46 | try { |
|
47 | 47 | p.Join(); |
|
48 | 48 | throw new ApplicationException("WRONG!"); |
|
49 | 49 | } catch (TargetInvocationException err) { |
|
50 | 50 | Assert.AreEqual(err.InnerException.Message, "failed"); |
|
51 | 51 | } catch { |
|
52 | 52 | Assert.Fail("Got wrong excaption"); |
|
53 | 53 | } |
|
54 | 54 | } |
|
55 | 55 | |
|
56 | 56 | [TestMethod] |
|
57 | 57 | public void MapTest() { |
|
58 | 58 | var p = new Promise<int>(); |
|
59 | 59 | |
|
60 | 60 | var p2 = p.Map(x => x.ToString()); |
|
61 | 61 | p.Resolve(100); |
|
62 | 62 | |
|
63 | 63 | Assert.AreEqual(p2.Join(), "100"); |
|
64 | 64 | } |
|
65 | 65 | |
|
66 | 66 | [TestMethod] |
|
67 | 67 | public void FixErrorTest() { |
|
68 | 68 | var p = new Promise<int>(); |
|
69 | 69 | |
|
70 | 70 | var p2 = p.Error(e => 101); |
|
71 | 71 | |
|
72 | 72 | p.Reject(new Exception()); |
|
73 | 73 | |
|
74 | 74 | Assert.AreEqual(p2.Join(), 101); |
|
75 | 75 | } |
|
76 | 76 | |
|
77 | 77 | [TestMethod] |
|
78 | 78 | public void ChainTest() { |
|
79 | 79 | var p1 = new Promise<int>(); |
|
80 | 80 | |
|
81 | 81 | var p3 = p1.Chain(x => { |
|
82 | 82 | var p2 = new Promise<string>(); |
|
83 | 83 | p2.Resolve(x.ToString()); |
|
84 | 84 | return p2; |
|
85 | 85 | }); |
|
86 | 86 | |
|
87 | 87 | p1.Resolve(100); |
|
88 | 88 | |
|
89 | 89 | Assert.AreEqual(p3.Join(), "100"); |
|
90 | 90 | } |
|
91 | 91 | |
|
92 | 92 | [TestMethod] |
|
93 | 93 | public void PoolTest() { |
|
94 | 94 | var pid = Thread.CurrentThread.ManagedThreadId; |
|
95 | 95 | var p = AsyncPool.Invoke(() => Thread.CurrentThread.ManagedThreadId); |
|
96 | 96 | |
|
97 | 97 | Assert.AreNotEqual(pid, p.Join()); |
|
98 | 98 | } |
|
99 | 99 | |
|
100 | 100 | [TestMethod] |
|
101 | 101 | public void WorkerPoolSizeTest() { |
|
102 | 102 | var pool = new WorkerPool(5, 10, 0); |
|
103 | 103 | |
|
104 | 104 | Assert.AreEqual(5, pool.PoolSize); |
|
105 | 105 | |
|
106 | 106 | pool.Invoke(() => { Thread.Sleep(1000000); return 10; }); |
|
107 | 107 | pool.Invoke(() => { Thread.Sleep(1000000); return 10; }); |
|
108 | 108 | pool.Invoke(() => { Thread.Sleep(1000000); return 10; }); |
|
109 | 109 | |
|
110 | 110 | Assert.AreEqual(5, pool.PoolSize); |
|
111 | 111 | |
|
112 | 112 | for (int i = 0; i < 100; i++) |
|
113 | 113 | pool.Invoke(() => { Thread.Sleep(1000000); return 10; }); |
|
114 | 114 | Thread.Sleep(100); |
|
115 | 115 | Assert.AreEqual(10, pool.PoolSize); |
|
116 | 116 | |
|
117 | 117 | pool.Dispose(); |
|
118 | 118 | } |
|
119 | 119 | |
|
120 | 120 | [TestMethod] |
|
121 | 121 | public void WorkerPoolCorrectTest() { |
|
122 | 122 | var pool = new WorkerPool(0,1000,100); |
|
123 | 123 | |
|
124 | 124 | int iterations = 1000; |
|
125 | 125 | int pending = iterations; |
|
126 | 126 | var stop = new ManualResetEvent(false); |
|
127 | 127 | |
|
128 | 128 | var count = 0; |
|
129 | 129 | for (int i = 0; i < iterations; i++) { |
|
130 | 130 | pool |
|
131 | 131 | .Invoke(() => 1) |
|
132 | 132 | .Then(x => Interlocked.Add(ref count, x)) |
|
133 | 133 | .Then(x => Math.Log10(x)) |
|
134 | 134 | .Anyway(() => { |
|
135 | 135 | Interlocked.Decrement(ref pending); |
|
136 | 136 | if (pending == 0) |
|
137 | 137 | stop.Set(); |
|
138 | 138 | }); |
|
139 | 139 | } |
|
140 | 140 | |
|
141 | 141 | stop.WaitOne(); |
|
142 | 142 | |
|
143 | 143 | Assert.AreEqual(iterations, count); |
|
144 | 144 | Console.WriteLine("Max threads: {0}", pool.MaxRunningThreads); |
|
145 | 145 | pool.Dispose(); |
|
146 | 146 | |
|
147 | 147 | } |
|
148 | 148 | |
|
149 | 149 | [TestMethod] |
|
150 | 150 | public void WorkerPoolDisposeTest() { |
|
151 | 151 | var pool = new WorkerPool(5, 20); |
|
152 | 152 | Assert.AreEqual(5, pool.PoolSize); |
|
153 | 153 | pool.Dispose(); |
|
154 |
Thread.Sleep( |
|
|
154 | Thread.Sleep(500); | |
|
155 | 155 | Assert.AreEqual(0, pool.PoolSize); |
|
156 | 156 | pool.Dispose(); |
|
157 | 157 | } |
|
158 | 158 | |
|
159 | 159 | [TestMethod] |
|
160 | 160 | public void MTQueueTest() { |
|
161 | 161 | var queue = new MTQueue<int>(); |
|
162 | 162 | int res; |
|
163 | 163 | |
|
164 | 164 | queue.Enqueue(10); |
|
165 | 165 | Assert.IsTrue(queue.TryDequeue(out res)); |
|
166 | 166 | Assert.AreEqual(10, res); |
|
167 | 167 | Assert.IsFalse(queue.TryDequeue(out res)); |
|
168 | 168 | |
|
169 | 169 | for (int i = 0; i < 1000; i++) |
|
170 | 170 | queue.Enqueue(i); |
|
171 | 171 | |
|
172 | 172 | for (int i = 0; i < 1000; i++) { |
|
173 | 173 | queue.TryDequeue(out res); |
|
174 | 174 | Assert.AreEqual(i, res); |
|
175 | 175 | } |
|
176 | 176 | |
|
177 | 177 | int writers = 0; |
|
178 | 178 | int readers = 0; |
|
179 | 179 | var stop = new ManualResetEvent(false); |
|
180 | 180 | int total = 0; |
|
181 | 181 | |
|
182 | 182 | int itemsPerWriter = 1000; |
|
183 | 183 | int writersCount = 3; |
|
184 | 184 | |
|
185 | 185 | for (int i = 0; i < writersCount; i++) { |
|
186 | 186 | Interlocked.Increment(ref writers); |
|
187 | 187 | var wn = i; |
|
188 | 188 | AsyncPool |
|
189 | 189 | .InvokeNewThread(() => { |
|
190 | 190 | for (int ii = 0; ii < itemsPerWriter; ii++) { |
|
191 | 191 | queue.Enqueue(1); |
|
192 | 192 | } |
|
193 | 193 | return 1; |
|
194 | 194 | }) |
|
195 | 195 | .Anyway(() => Interlocked.Decrement(ref writers)); |
|
196 | 196 | } |
|
197 | 197 | |
|
198 | 198 | for (int i = 0; i < 10; i++) { |
|
199 | 199 | Interlocked.Increment(ref readers); |
|
200 | 200 | var wn = i; |
|
201 | 201 | AsyncPool |
|
202 | 202 | .InvokeNewThread(() => { |
|
203 | 203 | int t; |
|
204 | 204 | do { |
|
205 | 205 | while (queue.TryDequeue(out t)) |
|
206 | 206 | Interlocked.Add(ref total, t); |
|
207 | 207 | } while (writers > 0); |
|
208 | 208 | return 1; |
|
209 | 209 | }) |
|
210 | 210 | .Anyway(() => { |
|
211 | 211 | Interlocked.Decrement(ref readers); |
|
212 | 212 | if (readers == 0) |
|
213 | 213 | stop.Set(); |
|
214 | 214 | }); |
|
215 | 215 | } |
|
216 | 216 | |
|
217 | 217 | stop.WaitOne(); |
|
218 | 218 | |
|
219 | 219 | Assert.AreEqual(itemsPerWriter * writersCount, total); |
|
220 | 220 | } |
|
221 | 221 | |
|
222 | 222 | [TestMethod] |
|
223 | 223 | public void ParallelMapTest() { |
|
224 | 224 | |
|
225 | 225 | int count = 100000; |
|
226 | 226 | |
|
227 | 227 | double[] args = new double[count]; |
|
228 | 228 | var rand = new Random(); |
|
229 | 229 | |
|
230 | 230 | for (int i = 0; i < count; i++) |
|
231 | 231 | args[i] = rand.NextDouble(); |
|
232 | 232 | |
|
233 | 233 | var t = Environment.TickCount; |
|
234 | 234 | var res = args.ParallelMap(x => Math.Sin(x*x), 4).Join(); |
|
235 | 235 | |
|
236 | 236 | Console.WriteLine("Map complete in {0} ms", Environment.TickCount - t); |
|
237 | 237 | |
|
238 | 238 | t = Environment.TickCount; |
|
239 | 239 | for (int i = 0; i < count; i++) |
|
240 | 240 | Assert.AreEqual(Math.Sin(args[i] * args[i]), res[i]); |
|
241 | 241 | Console.WriteLine("Verified in {0} ms", Environment.TickCount - t); |
|
242 | 242 | } |
|
243 | 243 | |
|
244 | 244 | [TestMethod] |
|
245 | 245 | public void ChainedMapTest() { |
|
246 | 246 | |
|
247 |
using (var pool = new WorkerPool(0,100, |
|
|
247 | using (var pool = new WorkerPool(0,100,1)) { | |
|
248 | 248 | int count = 10000; |
|
249 | 249 | |
|
250 | 250 | double[] args = new double[count]; |
|
251 | 251 | var rand = new Random(); |
|
252 | 252 | |
|
253 | 253 | for (int i = 0; i < count; i++) |
|
254 | 254 | args[i] = rand.NextDouble(); |
|
255 | 255 | |
|
256 | 256 | var t = Environment.TickCount; |
|
257 | 257 | var res = args |
|
258 | 258 | .ChainedMap( |
|
259 | 259 | x => pool.Invoke( |
|
260 | 260 | () => Math.Sin(x * x) |
|
261 | 261 | ), |
|
262 | 262 | 4 |
|
263 | 263 | ) |
|
264 | 264 | .Join(); |
|
265 | 265 | |
|
266 | 266 | Console.WriteLine("Map complete in {0} ms", Environment.TickCount - t); |
|
267 | 267 | |
|
268 | 268 | t = Environment.TickCount; |
|
269 | 269 | for (int i = 0; i < count; i++) |
|
270 | 270 | Assert.AreEqual(Math.Sin(args[i] * args[i]), res[i]); |
|
271 | 271 | Console.WriteLine("Verified in {0} ms", Environment.TickCount - t); |
|
272 | 272 | Console.WriteLine("Max workers: {0}", pool.MaxRunningThreads); |
|
273 | 273 | } |
|
274 | 274 | } |
|
275 | 275 | |
|
276 | 276 | [TestMethod] |
|
277 | 277 | public void ParallelForEachTest() { |
|
278 | 278 | |
|
279 | 279 | int count = 100000; |
|
280 | 280 | |
|
281 | 281 | int[] args = new int[count]; |
|
282 | 282 | var rand = new Random(); |
|
283 | 283 | |
|
284 | 284 | for (int i = 0; i < count; i++) |
|
285 | 285 | args[i] = (int)(rand.NextDouble() * 100); |
|
286 | 286 | |
|
287 | 287 | int result = 0; |
|
288 | 288 | |
|
289 | 289 | var t = Environment.TickCount; |
|
290 | 290 | args.ParallelForEach(x => Interlocked.Add(ref result, x), 4).Join(); |
|
291 | 291 | |
|
292 | 292 | Console.WriteLine("Iteration complete in {0} ms, result: {1}", Environment.TickCount - t, result); |
|
293 | 293 | |
|
294 | 294 | int result2 = 0; |
|
295 | 295 | |
|
296 | 296 | t = Environment.TickCount; |
|
297 | 297 | for (int i = 0; i < count; i++) |
|
298 | 298 | result2 += args[i]; |
|
299 | 299 | Assert.AreEqual(result2, result); |
|
300 | 300 | Console.WriteLine("Verified in {0} ms", Environment.TickCount - t); |
|
301 | 301 | } |
|
302 | 302 | |
|
303 | 303 | [TestMethod] |
|
304 | 304 | public void ComplexCase1Test() { |
|
305 | 305 | var flags = new bool[3]; |
|
306 | 306 | |
|
307 | 307 | // op1 (aync 200ms) => op2 (async 200ms) => op3 (sync map) |
|
308 | 308 | |
|
309 | 309 | var p = PromiseHelper |
|
310 | 310 | .Sleep(200, "Alan") |
|
311 | 311 | .Cancelled(() => flags[0] = true) |
|
312 | 312 | .Chain(x => |
|
313 | 313 | PromiseHelper |
|
314 | 314 | .Sleep(200, "Hi, " + x) |
|
315 | 315 | .Map(y => y) |
|
316 | 316 | .Cancelled(() => flags[1] = true) |
|
317 | 317 | ) |
|
318 | 318 | .Cancelled(() => flags[2] = true); |
|
319 | 319 | Thread.Sleep(300); |
|
320 | 320 | p.Cancel(); |
|
321 | 321 | try { |
|
322 | 322 | Assert.AreEqual(p.Join(), "Hi, Alan"); |
|
323 | 323 | Assert.Fail("Shouldn't get here"); |
|
324 | 324 | } catch (OperationCanceledException) { |
|
325 | 325 | } |
|
326 | 326 | |
|
327 | 327 | Assert.IsFalse(flags[0]); |
|
328 | 328 | Assert.IsTrue(flags[1]); |
|
329 | 329 | Assert.IsTrue(flags[2]); |
|
330 | 330 | } |
|
331 | 331 | } |
|
332 | 332 | } |
|
333 | 333 |
|
1 | NO CONTENT: modified file, binary diff hidden |
@@ -1,279 +1,302 | |||
|
1 | 1 | using System; |
|
2 | 2 | using System.Collections.Generic; |
|
3 | 3 | using System.Linq; |
|
4 | 4 | using System.Text; |
|
5 | 5 | using System.Threading; |
|
6 | 6 | using System.Diagnostics; |
|
7 | 7 | |
|
8 | 8 | namespace Implab.Parallels { |
|
9 | 9 | public abstract class DispatchPool<TUnit> : IDisposable { |
|
10 | 10 | readonly int m_minThreads; |
|
11 | 11 | readonly int m_maxThreads; |
|
12 | int m_createdThreads = 0; | |
|
13 | int m_activeThreads = 0; | |
|
14 | int m_sleepingThreads = 0; | |
|
15 | int m_maxRunningThreads = 0; | |
|
16 | int m_exitRequired = 0; | |
|
17 | int m_releaseTimeout = 100; // timeout while the working thread will wait for the new tasks before exit | |
|
12 | ||
|
13 | int m_createdThreads = 0; // the current size of the pool | |
|
14 | int m_activeThreads = 0; // the count of threads which are active | |
|
15 | int m_sleepingThreads = 0; // the count of currently inactive threads | |
|
16 | int m_maxRunningThreads = 0; // the meximum reached size of the pool | |
|
17 | int m_exitRequired = 0; // the pool is going to shutdown, all unused workers are released | |
|
18 | int m_releaseTimeout = 100; // the timeout while the working thread will wait for the new tasks before exit | |
|
19 | int m_wakeEvents = 0; // the count of wake events | |
|
20 | ||
|
18 | 21 | AutoResetEvent m_hasTasks = new AutoResetEvent(false); |
|
19 | 22 | |
|
20 | 23 | protected DispatchPool(int min, int max) { |
|
21 | 24 | if (min < 0) |
|
22 | 25 | throw new ArgumentOutOfRangeException("min"); |
|
23 | 26 | if (max <= 0) |
|
24 | 27 | throw new ArgumentOutOfRangeException("max"); |
|
25 | 28 | |
|
26 | 29 | if (min > max) |
|
27 | 30 | min = max; |
|
28 | 31 | m_minThreads = min; |
|
29 | 32 | m_maxThreads = max; |
|
30 | 33 | } |
|
31 | 34 | |
|
32 | 35 | protected DispatchPool(int threads) |
|
33 | 36 | : this(threads, threads) { |
|
34 | 37 | } |
|
35 | 38 | |
|
36 | 39 | protected DispatchPool() { |
|
37 | 40 | int maxThreads, maxCP; |
|
38 | 41 | ThreadPool.GetMaxThreads(out maxThreads, out maxCP); |
|
39 | 42 | |
|
40 | 43 | m_minThreads = 0; |
|
41 | 44 | m_maxThreads = maxThreads; |
|
42 | 45 | } |
|
43 | 46 | |
|
44 | 47 | protected void InitPool() { |
|
45 | 48 | for (int i = 0; i < m_minThreads; i++) |
|
46 | 49 | StartWorker(); |
|
47 | 50 | } |
|
48 | 51 | |
|
49 | 52 | public int PoolSize { |
|
50 | 53 | get { |
|
51 | 54 | return m_createdThreads; |
|
52 | 55 | } |
|
53 | 56 | } |
|
54 | 57 | |
|
55 | 58 | public int ActiveThreads { |
|
56 | 59 | get { |
|
57 | 60 | return m_activeThreads; |
|
58 | 61 | } |
|
59 | 62 | } |
|
60 | 63 | |
|
61 | 64 | public int MaxRunningThreads { |
|
62 | 65 | get { |
|
63 | 66 | return m_maxRunningThreads; |
|
64 | 67 | } |
|
65 | 68 | } |
|
66 | 69 | |
|
67 | 70 | protected bool IsDisposed { |
|
68 | 71 | get { |
|
69 | 72 | return m_exitRequired != 0; |
|
70 | 73 | } |
|
71 | 74 | } |
|
72 | 75 | |
|
73 | 76 | protected abstract bool TryDequeue(out TUnit unit); |
|
74 | 77 | |
|
75 | protected virtual bool ExtendPool() { | |
|
76 | if (m_sleepingThreads == 0) | |
|
77 | // no sleeping workers are available | |
|
78 | // try create one | |
|
79 |
|
|
|
80 |
|
|
|
81 | // we can get here a race condition when several threads asks to extend pool | |
|
82 | // and some sleaping threads are exited due timeout but they are still counted as sleeping | |
|
83 | // in that case all of this threads could exit except one | |
|
84 | WakePool(); | |
|
85 | return true; | |
|
78 | #region thread execution traits | |
|
79 | int SignalThread() { | |
|
80 | var signals = Interlocked.Increment(ref m_wakeEvents); | |
|
81 | if(signals == 1) | |
|
82 | m_hasTasks.Set(); | |
|
83 | return signals; | |
|
86 | 84 |
|
|
87 | 85 | |
|
86 | bool Sleep(int timeout) { | |
|
87 | Interlocked.Increment(ref m_sleepingThreads); | |
|
88 | if (m_hasTasks.WaitOne(timeout)) { | |
|
89 | // this is autoreset event, only one thread can run this block simultaneously | |
|
90 | var sleeping = Interlocked.Decrement(ref m_sleepingThreads); | |
|
91 | if (Interlocked.Decrement(ref m_wakeEvents) > 0) | |
|
92 | m_hasTasks.Set(); // wake next worker | |
|
93 | ||
|
94 | return true; | |
|
95 | } else { | |
|
96 | Interlocked.Decrement(ref m_sleepingThreads); | |
|
97 | return false; | |
|
88 | 98 | } |
|
99 | } | |
|
100 | #endregion | |
|
89 | 101 | |
|
90 | 102 | /// <summary> |
|
91 | 103 | /// ΠΠ°ΠΏΡΡΠΊΠ°Π΅Ρ Π»ΠΈΠ±ΠΎ Π½ΠΎΠ²ΡΠΉ ΠΏΠΎΡΠΎΠΊ, Π΅ΡΠ»ΠΈ ΡΠ°Π½ΡΡΠ΅ Π½Π΅ Π±ΡΠ»ΠΎ Π½ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΠΊΠ°, Π»ΠΈΠ±ΠΎ ΡΡΡΠ°Π½Π°Π²Π»ΠΈΠ²Π°Π΅Ρ ΡΠΎΠ±ΡΡΠΈΠ΅ ΠΏΡΠΎΠ±ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠΏΡΡΠ΅Π³ΠΎ ΠΏΠΎΡΠΎΠΊΠ° |
|
92 | 104 | /// </summary> |
|
93 |
protected void |
|
|
94 | m_hasTasks.Set(); // wake sleeping thread; | |
|
105 | protected void GrowPool() { | |
|
106 | if (m_exitRequired != 0) | |
|
107 | return; | |
|
108 | if (m_sleepingThreads > m_wakeEvents) { | |
|
109 | // all sleeping threads may gone | |
|
110 | SignalThread(); // wake a sleeping thread; | |
|
111 | ||
|
112 | // we can't check whether signal has been processed | |
|
113 | // anyway it may take some time for the thread to start | |
|
114 | // we will ensure that at least one thread is running | |
|
95 | 115 | |
|
96 | 116 | if (AllocateThreadSlot(1)) { |
|
97 | 117 | // if there were no threads in the pool |
|
98 | 118 | var worker = new Thread(this.Worker); |
|
99 | 119 | worker.IsBackground = true; |
|
100 | 120 | worker.Start(); |
|
101 | 121 | } |
|
122 | } else { | |
|
123 | // if there is no sleeping threads in the pool | |
|
124 | StartWorker(); | |
|
125 | } | |
|
102 | 126 | } |
|
103 | 127 | |
|
104 | bool Sleep(int timeout) { | |
|
105 | Interlocked.Increment(ref m_sleepingThreads); | |
|
106 | var result = m_hasTasks.WaitOne(timeout); | |
|
107 | Interlocked.Decrement(ref m_sleepingThreads); | |
|
108 | return result; | |
|
109 | } | |
|
110 | ||
|
111 | protected virtual bool Suspend() { | |
|
128 | private bool Suspend() { | |
|
112 | 129 | //no tasks left, exit if the thread is no longer needed |
|
113 | 130 | bool last; |
|
114 | 131 | bool requestExit; |
|
115 | 132 | |
|
133 | ||
|
134 | ||
|
135 | // if threads have a timeout before releasing | |
|
116 | 136 | if (m_releaseTimeout > 0) |
|
117 | 137 | requestExit = !Sleep(m_releaseTimeout); |
|
118 | 138 | else |
|
119 | 139 | requestExit = true; |
|
120 | 140 | |
|
141 | if (!requestExit) | |
|
142 | return true; | |
|
121 | 143 | |
|
144 | // release unsused thread | |
|
122 | 145 | if (requestExit && ReleaseThreadSlot(out last)) { |
|
123 | 146 | // in case at the moment the last thread was being released |
|
124 | 147 | // a new task was added to the queue, we need to try |
|
125 | 148 | // to revoke the thread to avoid the situation when the task is left unprocessed |
|
126 | if (last && m_hasTasks.WaitOne(0)) { | |
|
149 | if (last && Sleep(0)) { // Sleep(0) will fetch pending task or will return false | |
|
127 | 150 | if (AllocateThreadSlot(1)) |
|
128 | 151 | return true; // spin again... |
|
129 | 152 | else |
|
130 | // we failed to reallocate the first slot for this thread | |
|
131 | // therefore we need to release the event | |
|
132 | m_hasTasks.Set(); | |
|
153 | SignalThread(); // since Sleep(0) has fetched the signal we neet to reschedule it | |
|
154 | ||
|
133 | 155 | } |
|
134 | 156 | |
|
135 | 157 | return false; |
|
136 | 158 | } |
|
137 | 159 | |
|
160 | // wait till infinity | |
|
138 | 161 | Sleep(-1); |
|
139 | 162 | |
|
140 | 163 | return true; |
|
141 | 164 | } |
|
142 | 165 | |
|
143 | 166 | #region thread slots traits |
|
144 | 167 | |
|
145 | 168 | bool AllocateThreadSlot() { |
|
146 | 169 | int current; |
|
147 | 170 | // use spins to allocate slot for the new thread |
|
148 | 171 | do { |
|
149 | 172 | current = m_createdThreads; |
|
150 | 173 | if (current >= m_maxThreads || m_exitRequired != 0) |
|
151 | 174 | // no more slots left or the pool has been disposed |
|
152 | 175 | return false; |
|
153 | 176 | } while (current != Interlocked.CompareExchange(ref m_createdThreads, current + 1, current)); |
|
154 | 177 | |
|
155 | 178 | UpdateMaxThreads(current + 1); |
|
156 | 179 | |
|
157 | 180 | return true; |
|
158 | 181 | } |
|
159 | 182 | |
|
160 | 183 | bool AllocateThreadSlot(int desired) { |
|
161 | 184 | if (desired - 1 != Interlocked.CompareExchange(ref m_createdThreads, desired, desired - 1)) |
|
162 | 185 | return false; |
|
163 | 186 | |
|
164 | 187 | UpdateMaxThreads(desired); |
|
165 | 188 | |
|
166 | 189 | return true; |
|
167 | 190 | } |
|
168 | 191 | |
|
169 | 192 | bool ReleaseThreadSlot(out bool last) { |
|
170 | 193 | last = false; |
|
171 | 194 | int current; |
|
172 | 195 | // use spins to release slot for the new thread |
|
173 | 196 | do { |
|
174 | 197 | current = m_createdThreads; |
|
175 | 198 | if (current <= m_minThreads && m_exitRequired == 0) |
|
176 | 199 | // the thread is reserved |
|
177 | 200 | return false; |
|
178 | 201 | } while (current != Interlocked.CompareExchange(ref m_createdThreads, current - 1, current)); |
|
179 | 202 | |
|
180 | 203 | last = (current == 1); |
|
181 | 204 | |
|
182 | 205 | return true; |
|
183 | 206 | } |
|
184 | 207 | |
|
185 | 208 | /// <summary> |
|
186 | 209 | /// releases thread slot unconditionally, used during cleanup |
|
187 | 210 | /// </summary> |
|
188 | 211 | /// <returns>true - no more threads left</returns> |
|
189 | 212 | bool ReleaseThreadSlotAnyway() { |
|
190 | 213 | var left = Interlocked.Decrement(ref m_createdThreads); |
|
191 | 214 | return left == 0; |
|
192 | 215 | } |
|
193 | 216 | |
|
194 | 217 | void UpdateMaxThreads(int count) { |
|
195 | 218 | int max; |
|
196 | 219 | do { |
|
197 | 220 | max = m_maxRunningThreads; |
|
198 | 221 | if (max >= count) |
|
199 | 222 | break; |
|
200 | 223 | } while(max != Interlocked.CompareExchange(ref m_maxRunningThreads, count, max)); |
|
201 | 224 | } |
|
202 | 225 | |
|
203 | 226 | #endregion |
|
204 | 227 | |
|
205 | 228 | bool StartWorker() { |
|
206 | 229 | if (AllocateThreadSlot()) { |
|
207 | 230 | // slot successfully allocated |
|
208 | 231 | var worker = new Thread(this.Worker); |
|
209 | 232 | worker.IsBackground = true; |
|
210 | 233 | worker.Start(); |
|
211 | 234 | |
|
212 | 235 | return true; |
|
213 | 236 | } else { |
|
214 | 237 | return false; |
|
215 | 238 | } |
|
216 | 239 | } |
|
217 | 240 | |
|
218 | bool FetchTask(out TUnit unit) { | |
|
241 | protected abstract void InvokeUnit(TUnit unit); | |
|
242 | ||
|
243 | void Worker() { | |
|
244 | TUnit unit; | |
|
245 | Interlocked.Increment(ref m_activeThreads); | |
|
246 | Sleep(0); // remove wake request if the new thread is started | |
|
219 | 247 | do { |
|
220 | 248 | // exit if requested |
|
221 | 249 | if (m_exitRequired != 0) { |
|
222 | 250 | // release the thread slot |
|
223 | 251 | Interlocked.Decrement(ref m_activeThreads); |
|
224 | 252 | if (ReleaseThreadSlotAnyway()) // it was the last worker |
|
225 | 253 | m_hasTasks.Dispose(); |
|
226 | 254 | else |
|
227 |
|
|
|
255 | SignalThread(); // wake next worker | |
|
228 | 256 | unit = default(TUnit); |
|
229 |
|
|
|
257 | break; | |
|
230 | 258 | } |
|
231 | 259 | |
|
232 | 260 | // fetch task |
|
233 | 261 | if (TryDequeue(out unit)) { |
|
234 |
|
|
|
235 |
|
|
|
262 | InvokeUnit(unit); | |
|
263 | continue; | |
|
236 | 264 | } |
|
237 | 265 | |
|
238 | 266 | Interlocked.Decrement(ref m_activeThreads); |
|
239 | 267 | |
|
240 | 268 | // entering suspend state |
|
241 | 269 | // keep this thread and wait |
|
242 | 270 | if (!Suspend()) |
|
243 |
|
|
|
271 | break; | |
|
244 | 272 | |
|
245 | 273 | Interlocked.Increment(ref m_activeThreads); |
|
246 | 274 | } while (true); |
|
247 | } | |
|
248 | 275 | |
|
249 | protected abstract void InvokeUnit(TUnit unit); | |
|
250 | ||
|
251 | void Worker() { | |
|
252 | TUnit unit; | |
|
253 | Interlocked.Increment(ref m_activeThreads); | |
|
254 | while (FetchTask(out unit)) | |
|
255 | InvokeUnit(unit); | |
|
256 | 276 | } |
|
257 | 277 | |
|
258 | 278 | protected virtual void Dispose(bool disposing) { |
|
259 | 279 | if (disposing) { |
|
260 | 280 | if (m_exitRequired == 0) { |
|
261 | 281 | if (Interlocked.CompareExchange(ref m_exitRequired, 1, 0) != 0) |
|
262 | 282 | return; |
|
263 | 283 | |
|
264 | 284 | // wake sleeping threads |
|
265 |
|
|
|
285 | if (m_createdThreads > 0) | |
|
286 | SignalThread(); | |
|
287 | else | |
|
288 | m_hasTasks.Dispose(); | |
|
266 | 289 | GC.SuppressFinalize(this); |
|
267 | 290 | } |
|
268 | 291 | } |
|
269 | 292 | } |
|
270 | 293 | |
|
271 | 294 | public void Dispose() { |
|
272 | 295 | Dispose(true); |
|
273 | 296 | } |
|
274 | 297 | |
|
275 | 298 | ~DispatchPool() { |
|
276 | 299 | Dispose(false); |
|
277 | 300 | } |
|
278 | 301 | } |
|
279 | 302 | } |
@@ -1,90 +1,77 | |||
|
1 | 1 | using System; |
|
2 | 2 | using System.Collections.Generic; |
|
3 | 3 | using System.Linq; |
|
4 | 4 | using System.Text; |
|
5 | 5 | using System.Threading; |
|
6 | 6 | using System.Diagnostics; |
|
7 | 7 | |
|
8 | 8 | namespace Implab.Parallels { |
|
9 | 9 | public class WorkerPool : DispatchPool<Action> { |
|
10 | 10 | |
|
11 | 11 | MTQueue<Action> m_queue = new MTQueue<Action>(); |
|
12 | 12 | int m_queueLength = 0; |
|
13 | 13 | readonly int m_threshold = 1; |
|
14 | 14 | |
|
15 | 15 | public WorkerPool(int minThreads, int maxThreads, int threshold) |
|
16 | 16 | : base(minThreads, maxThreads) { |
|
17 | 17 | m_threshold = threshold; |
|
18 | 18 | InitPool(); |
|
19 | 19 | } |
|
20 | 20 | |
|
21 | 21 | public WorkerPool(int minThreads, int maxThreads) : |
|
22 | 22 | base(minThreads, maxThreads) { |
|
23 | 23 | InitPool(); |
|
24 | 24 | } |
|
25 | 25 | |
|
26 | 26 | public WorkerPool(int threads) |
|
27 | 27 | : base(threads) { |
|
28 | 28 | InitPool(); |
|
29 | 29 | } |
|
30 | 30 | |
|
31 | 31 | public WorkerPool() |
|
32 | 32 | : base() { |
|
33 | 33 | InitPool(); |
|
34 | 34 | } |
|
35 | 35 | |
|
36 | 36 | public Promise<T> Invoke<T>(Func<T> task) { |
|
37 | 37 | if (task == null) |
|
38 | 38 | throw new ArgumentNullException("task"); |
|
39 | 39 | if (IsDisposed) |
|
40 | 40 | throw new ObjectDisposedException(ToString()); |
|
41 | 41 | |
|
42 | 42 | var promise = new Promise<T>(); |
|
43 | 43 | |
|
44 | 44 | EnqueueTask(delegate() { |
|
45 | 45 | try { |
|
46 | 46 | promise.Resolve(task()); |
|
47 | 47 | } catch (Exception e) { |
|
48 | 48 | promise.Reject(e); |
|
49 | 49 | } |
|
50 | 50 | }); |
|
51 | 51 | |
|
52 | 52 | return promise; |
|
53 | 53 | } |
|
54 | 54 | |
|
55 | 55 | protected void EnqueueTask(Action unit) { |
|
56 | 56 | Debug.Assert(unit != null); |
|
57 | 57 | var len = Interlocked.Increment(ref m_queueLength); |
|
58 | 58 | m_queue.Enqueue(unit); |
|
59 | 59 | |
|
60 | ExtendPool(); | |
|
61 | } | |
|
62 | ||
|
63 | protected override bool ExtendPool() { | |
|
64 | if (m_queueLength <= m_threshold*ActiveThreads) | |
|
65 | // in this case we are in active thread and it request for additional workers | |
|
66 | // satisfy it only when queue is longer than threshold | |
|
67 | return false; | |
|
68 | return base.ExtendPool(); | |
|
60 | if (len > m_threshold*ActiveThreads) | |
|
61 | GrowPool(); | |
|
69 | 62 | } |
|
70 | 63 | |
|
71 | 64 | protected override bool TryDequeue(out Action unit) { |
|
72 | 65 | if (m_queue.TryDequeue(out unit)) { |
|
73 | 66 | Interlocked.Decrement(ref m_queueLength); |
|
74 | 67 | return true; |
|
75 | 68 | } |
|
76 | 69 | return false; |
|
77 | 70 | } |
|
78 | 71 | |
|
79 | 72 | protected override void InvokeUnit(Action unit) { |
|
80 | 73 | unit(); |
|
81 | 74 | } |
|
82 | 75 | |
|
83 | protected override bool Suspend() { | |
|
84 | if (m_queueLength == 0) | |
|
85 | return base.Suspend(); | |
|
86 | else | |
|
87 | return true; // spin again without locks... | |
|
88 | 76 |
|
|
89 | 77 | } |
|
90 | } |
General Comments 0
You need to be logged in to leave comments.
Login now